mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
8.8 KiB
225 lines
8.8 KiB
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_lamb.py |
|
import torch |
|
|
|
from colossalai.utils import multi_tensor_applier |
|
|
|
|
|
class FusedLAMB(torch.optim.Optimizer): |
|
"""Implements LAMB algorithm. |
|
|
|
`FusedLAMB` requires CUDA extensions which can be built during installation or runtime. |
|
|
|
This version of fused LAMB implements 2 fusions. |
|
|
|
* Fusion of the LAMB update's elementwise operations |
|
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. |
|
|
|
:class:`colossalai.nn.optimizer.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer |
|
|
|
:class:`colossalai.nn.optimizer.FusedLAMB` may be used with or without Amp. |
|
|
|
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its norm. (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-6) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
NOT SUPPORTED now! (default: False) |
|
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay |
|
True for decoupled weight decay(also known as AdamW) (default: True) |
|
grad_averaging (bool, optional): whether apply (1-beta2) to grad when |
|
calculating running averages of gradient. (default: True) |
|
set_grad_none (bool, optional): whether set grad to None when zero_grad() |
|
method is called. (default: True) |
|
max_grad_norm (float, optional): value used to clip global grad norm |
|
(default: 1.0) |
|
use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0 |
|
weight decay parameter (default: False) |
|
|
|
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes: |
|
https://arxiv.org/abs/1904.00962 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
bias_correction=True, |
|
betas=(0.9, 0.999), |
|
eps=1e-6, |
|
weight_decay=0.01, |
|
amsgrad=False, |
|
adam_w_mode=True, |
|
grad_averaging=True, |
|
set_grad_none=True, |
|
max_grad_norm=1.0, |
|
use_nvlamb=False, |
|
): |
|
if amsgrad: |
|
raise RuntimeError("FusedLAMB does not support the AMSGrad variant.") |
|
defaults = dict( |
|
lr=lr, |
|
bias_correction=bias_correction, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
grad_averaging=grad_averaging, |
|
max_grad_norm=max_grad_norm, |
|
) |
|
super(FusedLAMB, self).__init__(params, defaults) |
|
if multi_tensor_applier.available: |
|
from colossalai.kernel.op_builder import FusedOptimBuilder |
|
|
|
fused_optim = FusedOptimBuilder().load() |
|
|
|
self.multi_tensor_l2norm = fused_optim.multi_tensor_l2norm |
|
# Skip buffer |
|
self._dummy_overflow_buf = torch.tensor( |
|
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device |
|
) |
|
self.multi_tensor_lamb = fused_optim.multi_tensor_lamb |
|
else: |
|
raise RuntimeError("FusedLAMB requires cuda extensions") |
|
|
|
self.adam_w_mode = 1 if adam_w_mode else 0 |
|
self.set_grad_none = set_grad_none |
|
self.use_nvlamb = use_nvlamb |
|
|
|
def zero_grad(self): |
|
if self.set_grad_none: |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
p.grad = None |
|
else: |
|
super(FusedLAMB, self).zero_grad() |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
# create separate grad lists for fp32 and fp16 params |
|
g_all_32, g_all_16 = [], [] |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
if p.dtype == torch.float32: |
|
g_all_32.append(p.grad.data) |
|
elif p.dtype == torch.float16: |
|
g_all_16.append(p.grad.data) |
|
else: |
|
raise RuntimeError("FusedLAMB only support fp16 and fp32.") |
|
|
|
device = self.param_groups[0]["params"][0].device |
|
g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device) |
|
# compute grad norm for two lists |
|
if len(g_all_32) > 0: |
|
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0] |
|
if len(g_all_16) > 0: |
|
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0] |
|
|
|
# blend two grad norms to get global grad norm |
|
global_grad_norm = multi_tensor_applier( |
|
self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False |
|
)[0] |
|
max_grad_norm = self.defaults["max_grad_norm"] |
|
|
|
for group in self.param_groups: |
|
bias_correction = 1 if group["bias_correction"] else 0 |
|
beta1, beta2 = group["betas"] |
|
grad_averaging = 1 if group["grad_averaging"] else 0 |
|
|
|
# assume same step across group now to simplify things |
|
# per parameter step can be easily support by making it tensor, or pass list into kernel |
|
if "step" in group: |
|
group["step"] += 1 |
|
else: |
|
group["step"] = 1 |
|
|
|
# create lists for multi-tensor apply |
|
g_16, p_16, m_16, v_16 = [], [], [], [] |
|
g_32, p_32, m_32, v_32 = [], [], [], [] |
|
|
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
if p.grad.data.is_sparse: |
|
raise RuntimeError( |
|
"FusedLAMB does not support sparse gradients, please consider SparseAdam instead" |
|
) |
|
|
|
state = self.state[p] |
|
# State initialization |
|
if len(state) == 0: |
|
# Exponential moving average of gradient values |
|
state["exp_avg"] = torch.zeros_like(p) |
|
# Exponential moving average of gradient values |
|
state["exp_avg_sq"] = torch.zeros_like(p) |
|
|
|
if p.dtype == torch.float16: |
|
g_16.append(p.grad.data) |
|
p_16.append(p.data) |
|
m_16.append(state["exp_avg"]) |
|
v_16.append(state["exp_avg_sq"]) |
|
elif p.dtype == torch.float32: |
|
g_32.append(p.grad.data) |
|
p_32.append(p.data) |
|
m_32.append(state["exp_avg"]) |
|
v_32.append(state["exp_avg_sq"]) |
|
else: |
|
raise RuntimeError("FusedLAMB only support fp16 and fp32.") |
|
|
|
if len(g_16) > 0: |
|
multi_tensor_applier( |
|
self.multi_tensor_lamb, |
|
self._dummy_overflow_buf, |
|
[g_16, p_16, m_16, v_16], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
bias_correction, |
|
group["weight_decay"], |
|
grad_averaging, |
|
self.adam_w_mode, |
|
global_grad_norm, |
|
max_grad_norm, |
|
self.use_nvlamb, |
|
) |
|
if len(g_32) > 0: |
|
multi_tensor_applier( |
|
self.multi_tensor_lamb, |
|
self._dummy_overflow_buf, |
|
[g_32, p_32, m_32, v_32], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
bias_correction, |
|
group["weight_decay"], |
|
grad_averaging, |
|
self.adam_w_mode, |
|
global_grad_norm, |
|
max_grad_norm, |
|
self.use_nvlamb, |
|
) |
|
|
|
return loss
|
|
|