mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
362 lines
14 KiB
362 lines
14 KiB
import dataclasses
|
|
import math
|
|
from typing import Any, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from colossalai.moe._operation import AllGather, AllToAll, MoeCombine, MoeDispatch, ReduceScatter
|
|
from colossalai.moe.experts import MLPExperts
|
|
from colossalai.moe.load_balance import LoadBalancer
|
|
from colossalai.moe.manager import MOE_MANAGER
|
|
from colossalai.moe.routers import MoeRouter, get_router_cls
|
|
from colossalai.moe.utils import get_noise_generator
|
|
from colossalai.tensor.moe_tensor.api import get_dp_group, get_ep_group, get_ep_size
|
|
|
|
|
|
class SparseMLP(nn.Module):
|
|
"""A class for users to create MoE modules in their models.
|
|
|
|
Args:
|
|
dim_model (int): Hidden dimension of training model
|
|
num_experts (int): The number experts
|
|
top_k (int, optional): The number of experts for dispatchment of each token
|
|
capacity_factor_train (float, optional): Capacity factor in routing during training
|
|
capacity_factor_eval (float, optional): Capacity factor in routing during evaluation
|
|
min_capacity (int, optional): The minimum number of the capacity of each expert
|
|
noisy_policy (str, optional): The policy of noisy function. Now we have 'Jitter' and 'Gaussian'.
|
|
'Jitter' can be found in `Switch Transformer paper`_.
|
|
'Gaussian' can be found in `ViT-MoE paper`_.
|
|
drop_tks (bool, optional): Whether drops tokens in evaluation
|
|
use_residual (bool, optional): Makes this MoE layer a Residual MoE.
|
|
More information can be found in `Microsoft paper`_.
|
|
residual_instance (nn.Module, optional): The instance of residual module in Residual MoE
|
|
expert_instance (MoeExperts, optional): The instance of experts module in MoeLayer
|
|
expert_cls (Type[nn.Module], optional): The class of each expert when no instance is given
|
|
expert_args (optional): The args of expert when no instance is given
|
|
|
|
.. _Switch Transformer paper:
|
|
https://arxiv.org/abs/2101.03961
|
|
.. _ViT-MoE paper:
|
|
https://arxiv.org/abs/2106.05974
|
|
.. _Microsoft paper:
|
|
https://arxiv.org/abs/2201.05596
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_experts: int,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
router_top_k: int = 1,
|
|
router_capacity_factor_train: Optional[float] = 1.25,
|
|
router_capacity_factor_eval: Optional[float] = 2.0,
|
|
router_min_capacity: Optional[int] = 4,
|
|
router_noisy_policy: Optional[str] = None,
|
|
router_drop_tks: Optional[bool] = True,
|
|
mlp_activation: Optional[str] = None,
|
|
mlp_gated: Optional[bool] = False,
|
|
enable_load_balance: Optional[bool] = False,
|
|
load_balance_tolerance: Optional[float] = 0.1,
|
|
load_balance_beam_width: Optional[int] = 8,
|
|
load_balance_group_swap_factor: Optional[float] = 0.4,
|
|
enable_kernel: Optional[bool] = False,
|
|
enable_comm_overlap: Optional[bool] = False,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_experts = num_experts
|
|
self.gated = mlp_gated
|
|
self.enable_kernel = enable_kernel
|
|
self.enable_comm_overlap = enable_comm_overlap
|
|
self.expert_parallel = MOE_MANAGER.get_parallel()
|
|
|
|
# moe router
|
|
noisy_func = get_noise_generator(router_noisy_policy, num_experts)
|
|
router_cls = get_router_cls(router_top_k)
|
|
self.topk = router_top_k
|
|
self.router: MoeRouter = router_cls(
|
|
capacity_factor_train=router_capacity_factor_train,
|
|
capacity_factor_eval=router_capacity_factor_eval,
|
|
min_capacity=router_min_capacity,
|
|
noisy_func=noisy_func,
|
|
drop_tks=router_drop_tks,
|
|
)
|
|
|
|
# gate
|
|
self.gate_weight = torch.nn.Parameter(torch.empty(num_experts, self.hidden_size))
|
|
|
|
# moe experts
|
|
self.experts = MLPExperts(
|
|
num_experts=self.num_experts,
|
|
expert_parallel=self.expert_parallel,
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=self.intermediate_size,
|
|
activation=mlp_activation,
|
|
gated=mlp_gated,
|
|
use_kernel=self.enable_kernel,
|
|
)
|
|
|
|
# get parallel settings
|
|
if self.expert_parallel is not None:
|
|
self.ep_group = get_ep_group(self.experts)
|
|
self.ep_size = get_ep_size(self.experts)
|
|
self.dp_group = get_dp_group(self.experts)
|
|
else:
|
|
self.ep_group = None
|
|
self.dp_group = None
|
|
self.num_local_experts = self.experts.num_local_experts
|
|
|
|
# load balance
|
|
self.enable_load_balance = enable_load_balance
|
|
if self.enable_load_balance == True:
|
|
self.load_balancer = LoadBalancer(
|
|
experts=self.experts,
|
|
gate=self.gate_weight,
|
|
local_expert_num=self.num_local_experts,
|
|
expert_num=self.num_experts,
|
|
ep_group=self.ep_group,
|
|
dp_group=self.dp_group,
|
|
tolerance=load_balance_tolerance,
|
|
beam_width=load_balance_beam_width,
|
|
group_swap_factor=load_balance_group_swap_factor,
|
|
)
|
|
|
|
# init param
|
|
self.reset_parameters()
|
|
|
|
@torch.no_grad()
|
|
def reset_parameters(self):
|
|
torch.nn.init.normal_(self.gate_weight, std=math.sqrt(0.1 / self.hidden_size))
|
|
|
|
def forward(self, inputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Args:
|
|
inputs (torch.Tensor): The input tensor of shape (batch_size, seq_len, hidden_size)
|
|
|
|
Returns:
|
|
torch.Tensor: The output tensor of shape (batch_size, seq_len, hidden_size)
|
|
"""
|
|
# reshape the input tokens
|
|
tokens = inputs.reshape(-1, self.hidden_size)
|
|
|
|
# the data type of the inputs in the gating should be fp32
|
|
fp32_input = tokens.to(torch.float)
|
|
fp32_weight = self.gate_weight.to(torch.float)
|
|
gate_output = F.linear(fp32_input, fp32_weight)
|
|
|
|
# update expert load
|
|
if self.enable_load_balance == True:
|
|
with torch.no_grad():
|
|
# TODO: optimize computation
|
|
expert_load = torch.topk(gate_output, k=self.topk, dim=-1)[1]
|
|
# TODO: bincount introduces synchronize, fix it
|
|
expert_load = torch.bincount(expert_load.view(-1))
|
|
self.load_balancer.update_load(expert_load)
|
|
|
|
# the result from the router
|
|
route_result_list = self.router(inputs=gate_output, use_kernel=self.enable_kernel, ep_group=self.ep_group)
|
|
|
|
# dispatch_data: (num_experts, capacity, hidden_size)
|
|
if self.enable_kernel:
|
|
dispatch_data = MoeDispatch.apply(tokens, *route_result_list[1:])
|
|
dispatch_data = dispatch_data.reshape(self.num_experts, -1, self.hidden_size)
|
|
else:
|
|
sec_mask_f = route_result_list[1].type_as(inputs)
|
|
dispatch_data = torch.matmul(sec_mask_f.permute(1, 2, 0), tokens)
|
|
|
|
# expert_output: (num_groups, num_experts, capacity, hidden_size)
|
|
if self.expert_parallel == "EP":
|
|
expert_output = self._ep_process(dispatch_data, overlap=self.enable_comm_overlap)
|
|
elif self.expert_parallel == "TP":
|
|
expert_output = self._tp_process(dispatch_data, overlap=self.enable_comm_overlap)
|
|
elif self.expert_parallel is None:
|
|
expert_output = self._local_process(dispatch_data)
|
|
else:
|
|
raise NotImplementedError("This kind of communication has not been implemented yet.\n"
|
|
"Please use Experts build function.")
|
|
|
|
if self.enable_kernel:
|
|
expert_output = expert_output.reshape(-1, self.hidden_size)
|
|
ans = MoeCombine.apply(expert_output, *route_result_list)
|
|
else:
|
|
combine_weights = route_result_list[0].type_as(inputs)
|
|
combine_weights = combine_weights.view(combine_weights.shape[0], -1)
|
|
expert_output = expert_output.view(-1, expert_output.shape[-1])
|
|
ans = torch.matmul(combine_weights, expert_output)
|
|
|
|
ans = ans.reshape(inputs.shape)
|
|
return ans
|
|
|
|
def _local_process(self, expert_in: torch.Tensor) -> torch.Tensor:
|
|
expert_in = expert_in.unsqueeze(0)
|
|
expert_out = self.experts(expert_in)
|
|
return expert_out
|
|
|
|
def _ep_process(self, dispatch_data: torch.Tensor, overlap: bool = False) -> torch.Tensor:
|
|
"""
|
|
Expert Parallel
|
|
|
|
Args:
|
|
dispatch_data (torch.Tensor): (num_experts, capacity, hidden_size)
|
|
|
|
Returns:
|
|
torch.Tensor: (num_experts, capacity, hidden_size)
|
|
"""
|
|
if not overlap or dist.get_world_size(self.ep_group) == 1:
|
|
expert_input = AllToAll.apply(dispatch_data, self.ep_group, False)[0]
|
|
expert_input = expert_input.reshape(self.ep_size, self.num_local_experts, -1, self.hidden_size)
|
|
expert_output = self.experts(expert_input)
|
|
expert_output = AllToAll.apply(expert_output, self.ep_group, False)[0]
|
|
return expert_output
|
|
|
|
else:
|
|
|
|
@dataclasses.dataclass
|
|
class Capsule:
|
|
data: torch.Tensor
|
|
handle: Any = None
|
|
|
|
NUM_CHUNK = 4
|
|
NUM_STAGES = 4
|
|
|
|
assert (dispatch_data.shape[1] % NUM_CHUNK == 0), "arbitrary chunk num is not supported yet"
|
|
chunk_size = dispatch_data.shape[1] // NUM_CHUNK
|
|
input_shape = (self.ep_size, self.num_local_experts, -1, self.hidden_size)
|
|
dispatch_data = dispatch_data.reshape(*input_shape)
|
|
chunk_data = torch.split(dispatch_data, chunk_size, dim=2)
|
|
output = torch.empty_like(dispatch_data)
|
|
|
|
offset = 0
|
|
_expert_in, expert_in, _expert_out, expert_out = None, None, None, None
|
|
|
|
for i in range(NUM_CHUNK + NUM_STAGES - 1):
|
|
if expert_out is not None:
|
|
expert_out.handle.wait()
|
|
output[:, :, offset:offset + chunk_size, :] = expert_out.data
|
|
offset += chunk_size
|
|
expert_out = None
|
|
|
|
# all2all last output
|
|
if _expert_out is not None:
|
|
expert_out = Capsule(*AllToAll.apply(_expert_out.data, self.ep_group, True),)
|
|
_expert_out = None
|
|
|
|
# all2all next input
|
|
if 0 <= i < NUM_CHUNK:
|
|
_expert_in = Capsule(*AllToAll.apply(chunk_data[i].contiguous(), self.ep_group, True))
|
|
|
|
# compute
|
|
if expert_in is not None:
|
|
expert_in.handle.wait()
|
|
_expert_out = Capsule(data=self.experts(expert_in.data), handle=None)
|
|
expert_in = None
|
|
|
|
if _expert_in is not None:
|
|
expert_in = _expert_in
|
|
_expert_in = None
|
|
|
|
return output
|
|
|
|
def _tp_process(self, dispatch_data: torch.Tensor, overlap: bool = False) -> torch.Tensor:
|
|
"""
|
|
without overlap:
|
|
| C |
|
|
| A | | R |
|
|
|
|
with overlap:
|
|
| C1 || C2 || C3 || C4 |
|
|
| A1 || A2 | | R1 | A3 || R2 | A4 || R3 | | R4 |
|
|
|
|
where C is computation, A is all gather, R is reduce scatter.
|
|
|
|
Args:
|
|
dispatch_data (torch.Tensor): (num_experts, capacity, hidden_size)
|
|
|
|
Returns:
|
|
torch.Tensor: (num_experts, capacity, hidden_size)
|
|
"""
|
|
if not overlap or dist.get_world_size(self.ep_group) == 1:
|
|
expert_in = AllGather.apply(dispatch_data, self.ep_group, False)[0]
|
|
expert_out = self.experts(expert_in)
|
|
expert_out = ReduceScatter.apply(expert_out, self.ep_group, False)[0]
|
|
return expert_out
|
|
else:
|
|
|
|
@dataclasses.dataclass
|
|
class Capsule:
|
|
data: torch.Tensor
|
|
handle: Any
|
|
indices: Tuple
|
|
|
|
NUM_CHUNK = 4
|
|
NUM_STAGES = 4
|
|
|
|
assert (dispatch_data.shape[0] % NUM_CHUNK == 0
|
|
), "arbitrary chunk num is not supported yet, please use chunk num that can divide num_experts"
|
|
chunk_size = dispatch_data.shape[0] // NUM_CHUNK
|
|
chunk_data = torch.split(dispatch_data, chunk_size, dim=0)
|
|
output = torch.empty_like(dispatch_data)
|
|
|
|
def get_chunk_slice(idx: int, chunk_size: int) -> Tuple[slice]:
|
|
return (slice(idx * chunk_size, (idx + 1) * chunk_size),)
|
|
|
|
_expert_in, expert_in, _expert_out, expert_out = None, None, None, None
|
|
|
|
for i in range(NUM_CHUNK + NUM_STAGES - 1):
|
|
if expert_out is not None:
|
|
expert_out.handle.wait()
|
|
output[expert_out.indices] = expert_out.data
|
|
expert_out = None
|
|
|
|
# reduce scatter last output
|
|
if _expert_out is not None:
|
|
expert_out = Capsule(
|
|
*ReduceScatter.apply(_expert_out.data, self.ep_group, True),
|
|
indices=_expert_out.indices,
|
|
)
|
|
_expert_out = None
|
|
|
|
# all gather next input
|
|
if 0 <= i < NUM_CHUNK:
|
|
_expert_in = Capsule(
|
|
*AllGather.apply(chunk_data[i].contiguous(), self.ep_group, True),
|
|
indices=get_chunk_slice(i, chunk_size),
|
|
)
|
|
|
|
# compute
|
|
if expert_in is not None:
|
|
expert_in.handle.wait()
|
|
_expert_out = Capsule(
|
|
self.experts(expert_in.data, expert_in.indices),
|
|
handle=None,
|
|
indices=expert_in.indices,
|
|
)
|
|
expert_in = None
|
|
|
|
if _expert_in is not None:
|
|
expert_in = _expert_in
|
|
_expert_in = None
|
|
|
|
return output
|
|
|
|
|
|
def apply_load_balance(model: nn.Module, optim: Any) -> None:
|
|
"""
|
|
apply load balance to every experts in the model
|
|
"""
|
|
|
|
def _apply_recursive(module: nn.Module):
|
|
for _, sub_module in module.named_children():
|
|
if isinstance(sub_module, SparseMLP):
|
|
if sub_module.enable_load_balance == True:
|
|
sub_module.load_balancer.balance_load(optim)
|
|
_apply_recursive(sub_module)
|
|
|
|
torch.cuda.empty_cache()
|
|
_apply_recursive(model)
|
|
torch.cuda.empty_cache()
|