Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

127 lines
3.9 KiB

from typing import Any
import torch
from torch.fx.proxy import Proxy
from colossalai.fx.tracer.meta_patch import meta_patched_function
__all__ = ["ColoProxy"]
class ColoProxy(Proxy):
"""
ColoProxy is a proxy class which uses meta tensor to handle data-dependent control flow. The original torch.fx proxy
cannot be used to infer the condition statement, with this proxy, torch.fx can still run even with if statements.
Example::
proxy = tracer.create_proxy(...)
proxy.meta_data = torch.empty(4, 2, device='meta')
print(len(proxy)) # expect output 4
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.node._meta_data = None
@property
def meta_data(self):
return self.node._meta_data
@meta_data.setter
def meta_data(self, data: Any):
self.node._meta_data = data
@property
def has_meta_data(self):
return self._meta_data is not None
def _assert_meta_data_is_tensor(self):
assert (
torch.is_tensor(self._meta_data) and self._meta_data.is_meta
), f"Meta data is not a meta tensor for {self.node.name}"
def _assert_has_meta_data(self):
assert self._meta_data is not None, f"Meta data is not set for {self.node.name}"
def __len__(self):
self._assert_has_meta_data()
return len(self.meta_data)
def __int__(self):
self._assert_has_meta_data()
return int(self.meta_data)
def __float__(self):
self._assert_has_meta_data()
return float(self.meta_data)
def __bool__(self):
self._assert_has_meta_data()
return self.meta_data
def __getattr__(self, k):
return ColoAttribute(self, k)
def __contains__(self, key):
if self.node.op == "placeholder":
# this is used to handle like
# if x in kwargs
# we don't handle this case for now
return False
return super().__contains__(key)
def extract_meta(*args, **kwargs):
"""
This function is copied from _tracer_utils.py to avoid circular import issue.
"""
def _convert(val):
if isinstance(val, ColoProxy):
return val.meta_data
elif isinstance(val, (list, tuple)):
return type(val)([_convert(ele) for ele in val])
return val
new_args = [_convert(val) for val in args]
new_kwargs = {k: _convert(v) for k, v in kwargs.items()}
return new_args, new_kwargs
class ColoAttribute(ColoProxy):
def __init__(self, root, attr: str):
self.root = root
self.attr = attr
self.tracer = root.tracer
self._node = None
@property
def node(self):
if self._node is None:
proxy = self.tracer.create_proxy("call_function", getattr, (self.root, self.attr), {})
if not isinstance(proxy, ColoProxy):
meta_args, meta_kwargs = extract_meta(*(self.root, self.attr))
meta_out = getattr(*meta_args, **meta_kwargs)
proxy = ColoProxy(proxy.node)
proxy.meta_data = meta_out
self._node = proxy.node
return self._node
def __call__(self, *args, **kwargs):
proxy = self.tracer.create_proxy("call_method", self.attr, (self.root,) + args, kwargs)
if not isinstance(proxy, ColoProxy):
meta_args, meta_kwargs = extract_meta(*((self.root,) + args), **kwargs)
method = getattr(meta_args[0].__class__, self.attr)
if meta_patched_function.has(method):
meta_target = meta_patched_function.get(method)
elif meta_patched_function.has(method.__name__):
meta_target = meta_patched_function.get(method.__name__)
else:
meta_target = method
meta_out = meta_target(*meta_args, **meta_kwargs)
proxy = ColoProxy(proxy.node)
proxy.meta_data = meta_out
return proxy