You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/engine/schedule/_pipeline_schedule.py

834 lines
40 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import inspect
from typing import Callable, List, Tuple, Union
import torch.cuda
import colossalai.communication as comm
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.utils import switch_virtual_pipeline_parallel_rank
from colossalai.utils.cuda import get_current_device
from ._base_schedule import BaseSchedule
def get_tensor_shape():
if hasattr(gpc.config, 'TENSOR_SHAPE'):
return gpc.config.TENSOR_SHAPE
if not gpc.is_initialized(ParallelMode.PIPELINE):
return None
if hasattr(gpc.config, 'SEQ_LENGTH') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(
gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'HIDDEN_SIZE'):
if gpc.is_initialized(ParallelMode.DATA):
dp_size = gpc.get_world_size(ParallelMode.DATA)
else:
dp_size = 1
if gpc.is_initialized(ParallelMode.SEQUENCE):
seq_size = gpc.get_world_size(ParallelMode.SEQUENCE)
else:
seq_size = 1
tensor_shape = (gpc.config.SEQ_LENGTH // seq_size,
gpc.config.GLOBAL_BATCH_SIZE // dp_size // gpc.config.NUM_MICRO_BATCHES, gpc.config.HIDDEN_SIZE)
return tensor_shape
else:
return None
def pack_return_tensors(return_tensors):
output, label = tuple(zip(*return_tensors))
if isinstance(output[0], torch.Tensor):
output = torch.cat(output, dim=0)
elif isinstance(output[0], (list, tuple)):
output = tuple(torch.cat(tensors, dim=0) for tensors in zip(*output))
else:
raise TypeError(f'Output of model must be tensor or list/tuple of tensors')
if isinstance(label[0], torch.Tensor):
label = torch.cat(label, dim=0)
else:
merged_label = {k: [] for k in label[0].keys()}
for d in label:
for k, v in d.items():
merged_label[k].append(v)
label = {k: torch.cat(v, dim=0) for k, v in merged_label.items()}
return output, label
class PipelineSchedule(BaseSchedule):
"""A helper schedule class for pipeline parallelism running environment.
It uses non-interleaved 1F1B strategy. Other properties are similar as
:class:`NonPipelineSchedule`.
Args:
num_microbatches (int): The number of microbatches.
data_process_func (Callable, optional):
The preprocessing function which receives a batch of data, and it will be executed in `load_batch`.
tensor_shape (torch.Size, optional): Specified shape in pipeline communication.
scatter_gather_tensors (bool, optional):
If set to `True`, communication will be reduced over pipeline when using 1D tensor parallelization.
Example:
# this shows an example of customized data_process_func
def data_process_func(stage_output, dataloader_output):
output1, output2 = stage_output
item1, item2, item3 = dataloader_output
# assume item2 is not needed
data = (output1, output2, item1)
label = item3
return data, label
"""
def __init__(self,
num_microbatches,
data_process_func: Callable = None,
tensor_shape: Union[torch.Size, List[int], Tuple[int]] = None,
scatter_gather_tensors: bool = False):
# we need to make sure that the signature of the data_process_func is valid
if data_process_func:
sig = inspect.signature(data_process_func)
assert len(sig.parameters) == 2, \
'The data_process_func only takes in two parameters for NonPipelineSchedule, ' \
'which is the tensors passed by the previous pipeline stage and the dataloader output from this stage, ' \
'i.e. data_process_func(stage_output, dataloader_output).'
super().__init__(data_process_func=data_process_func)
assert num_microbatches > 0, f'expected num_microbatches to be larger then 1, but got {num_microbatches}'
self.num_microbatches = num_microbatches
self.dtype = torch.float
assert not isinstance(tensor_shape,
int), "tensor_shape type should be one of Union[torch.Size, List[int], Tuple[int]]."
if tensor_shape is None:
self.tensor_shape = tensor_shape
elif isinstance(tensor_shape, torch.Size):
self.tensor_shape = tensor_shape
else:
self.tensor_shape = torch.Size(tensor_shape)
self.scatter_gather_tensors = False
if gpc.is_initialized(ParallelMode.PARALLEL_1D) and gpc.get_world_size(ParallelMode.PARALLEL_1D) > 1:
self.scatter_gather_tensors = scatter_gather_tensors
self._logger = get_dist_logger()
# cache for the batch data
self.batch_data = None
def load_batch(self, data_iter):
# Pipeline schedule just puts data in memory
batch_data = super().load_batch(data_iter, to_gpu=False)
self.microbatch_offset = 0
assert self.batch_size % self.num_microbatches == 0, \
"Batch size should divided by the number of microbatches"
self.microbatch_size = self.batch_size // self.num_microbatches
self.batch_data = batch_data
def _get_data_slice(self, data, offset):
if isinstance(data, torch.Tensor):
return data[offset:offset + self.microbatch_size]
elif isinstance(data, (list, tuple)):
data_dict = {}
for element in data:
if isinstance(element, dict):
data_dict.update({k: v[offset:offset + self.microbatch_size] for k, v in element.items()})
elif data_dict:
data_dict['label'] = element[offset:offset + self.microbatch_size]
if data_dict:
return data_dict
return [val[offset:offset + self.microbatch_size] for val in data]
elif isinstance(data, dict):
return {k: v[offset:offset + self.microbatch_size] for k, v in data.items()}
else:
raise TypeError(f"Expected data to be of type torch.Tensor, list, tuple, or dict, but got {type(data)}")
def load_micro_batch(self):
micro_batch_data = self._get_data_slice(self.batch_data, self.microbatch_offset)
self.microbatch_offset += self.microbatch_size
return self._move_to_device(micro_batch_data)
def pre_processing(self, engine):
from colossalai.zero.legacy import ShardedModelV2
# TODO: remove this after testing new zero with pipeline parallelism
model = engine.model
if isinstance(model, NaiveAMPModel):
self.dtype = torch.half
model = model.model
if isinstance(model, ShardedModelV2):
self.dtype = torch.half
model = model.module
# sig = inspect.signature(model.forward)
# for p in sig.parameters.values():
# assert p.kind != inspect.Parameter.VAR_POSITIONAL, '*args is not supported'
@staticmethod
def _call_engine(model, data):
if data is not None:
if isinstance(data, torch.Tensor):
return model(data)
elif isinstance(data, (list, tuple)):
return model(*data)
elif isinstance(data, dict):
stage_output = None
if 'stage_output' in data:
stage_output = data.pop('stage_output')
if stage_output is None:
return model(**data)
elif isinstance(stage_output, torch.Tensor):
return model(stage_output, **data)
elif isinstance(stage_output, (tuple, list)):
return model(*stage_output, **data)
else:
raise TypeError(
f"Expected stage_output to be of type torch.Tensor, list, or tuple, but got {type(stage_output)}"
)
else:
raise TypeError(f"Expected data to be of type torch.Tensor, list, tuple, or dict, but got {type(data)}")
def _get_actual_forward_func(self, module):
if isinstance(module, NaiveAMPModel):
sig = inspect.signature(module.model.forward)
elif hasattr(module, 'colo_attr'):
sig = inspect.signature(module.module.forward)
else:
sig = inspect.signature(module.forward)
return sig
def _get_data_label_for_current_step(self, stage_output, micro_batch_data, criterion, model):
if self.data_process_func:
# use customized function to get data and label
data, label = self.data_process_func(stage_output, micro_batch_data)
else:
if isinstance(micro_batch_data, (tuple, list)):
if gpc.is_first_rank(ParallelMode.PIPELINE):
# for the first stage, we use the data from the
# dataloader output by default
data, label = micro_batch_data
else:
# for non-first stage, we use the output passed
# by the previous as the model input
data = stage_output
_, label = micro_batch_data
elif isinstance(micro_batch_data, dict):
data = {}
data['stage_output'] = stage_output
if 'label' in micro_batch_data:
label = micro_batch_data.pop('label')
else:
label = None
load_data = micro_batch_data
data.update(load_data)
return data, label
def _forward_step(self, engine, input_obj, return_tensors, return_output_label=True, accum_loss=None):
"""Forward step for passed-in model. If it is the first stage, the input tensor
is obtained from data_iterator, otherwise the passed-in input_obj is used.
Returns output tensor. This is a helper function and can be ignored by users.
Args:
engine (colossalai.engine.Engine): Colossalai engine for training and inference.
input_obj (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Input tensor for this pipeline stage.
return_tensors (List[:class:`torch.Tensor`]): A list of tensors to return.
return_output_label (bool, optional): Whether returns output labels.
accum_loss (optional): Where accumulated loss stores.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: output or the loss value of the current pipeline stage.
"""
micro_batch_data = self.load_micro_batch()
data, label = self._get_data_label_for_current_step(input_obj, micro_batch_data, engine.criterion, engine.model)
output_obj = self._call_engine(engine.model, data)
if gpc.is_last_rank(ParallelMode.PIPELINE):
if return_output_label:
return_tensors.append((output_obj, label))
if accum_loss is not None:
loss_reduced = self._call_engine_criterion(engine, output_obj, label) / self.num_microbatches
accum_loss.add_(loss_reduced.detach())
return loss_reduced
else:
# forward only, it's useless since backward is not needed
return output_obj
else:
if isinstance(output_obj, torch.Tensor):
self._logger.debug(
f'Global rank {gpc.get_global_rank()}, pipeline rank {gpc.get_local_rank(ParallelMode.PIPELINE)} forward output tensor {output_obj.shape}, dtype {output_obj.dtype}'
)
return output_obj
def _backward_step(self, engine, input_obj, output_obj, output_obj_grad):
"""Backward step through the passed-in output tensor. If it is the last stage, the
output_obj_grad is None, otherwise it is the gradients with respect to stage's output tensor.
Returns the gradients with respect to the input tensor (None if first stage).
This is a helper function and can be ignored by users.
Args:
engine (colossalai.engine.Engine): Colossalai engine for training and inference.
input_obj (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): input tensor for this pipeline stage.
output_obj (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): output tensor for this pipeline stage.
output_obj_grad (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): gradient of output tensor for this pipeline stage.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: gradient of input tensor.
"""
# Retain the grad on the input_obj.
if input_obj is not None:
if isinstance(input_obj, torch.Tensor):
input_obj.retain_grad()
else:
for in_tensor in input_obj:
if in_tensor is not None:
in_tensor.retain_grad()
# Backward pass.
if output_obj_grad is None:
engine.backward(output_obj)
else:
engine.backward_by_grad(output_obj, output_obj_grad)
# Collect the grad of the input_obj.
input_obj_grad = None
if input_obj is not None:
if isinstance(input_obj, torch.Tensor):
input_obj_grad = input_obj.grad
else:
input_obj_grad = []
for in_tensor in input_obj:
input_obj_grad.append(in_tensor.grad)
return input_obj_grad
def forward_backward_step(self, engine, data_iter, forward_only=False, return_loss=True, return_output_label=True):
"""Runs non-interleaved 1F1B schedule, with communication between pipeline stages.
Returns a tuple with losses if the last stage, an empty tuple otherwise.
Args:
engine (colossalai.engine.Engine): Colossalai engine for training and inference.
data_iter (Iterable): Dataloader as the form of an iterator, obtained by calling iter(dataloader).
forward_only (bool, optional):
Whether run forward step only. Default is false. If true, no backward will be run.
return_loss (bool, optional): Whether returns the loss value. Default is true.
return_output_label (bool, optional): If False, the output and label won't be returned.
Returns:
Tuple[:class:`torch.Tensor`]: A tuple of (output, label, loss), loss and label could be None.
"""
assert forward_only or return_loss, \
'The argument \'return_loss\' has to be True when \'forward_only\' is False, but got False.'
self.load_batch(data_iter)
num_warmup_microbatches = \
(gpc.get_world_size(ParallelMode.PIPELINE)
- gpc.get_local_rank(ParallelMode.PIPELINE) - 1)
num_warmup_microbatches = min(num_warmup_microbatches, self.num_microbatches)
num_microbatches_remaining = self.num_microbatches - num_warmup_microbatches
# Input, output tensors only need to be saved when doing backward passes
input_objs = None
output_objs = None
if not forward_only:
input_objs = []
output_objs = []
return_tensors = []
if return_loss and gpc.is_pipeline_last_stage(ignore_virtual=True):
accum_loss = torch.zeros(1, device=get_current_device())
else:
accum_loss = None
# Used for tensor meta information communication
ft_shapes = self.tensor_shape
bt_shapes = None
fs_checker = self.tensor_shape is None
# Run warmup forward passes.
for i in range(num_warmup_microbatches):
if not gpc.is_first_rank(ParallelMode.PIPELINE):
ft_shapes = comm.recv_obj_meta(ft_shapes)
input_obj = comm.recv_forward(ft_shapes,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
output_obj = self._forward_step(engine,
input_obj,
return_tensors,
return_output_label=return_output_label,
accum_loss=accum_loss)
if not gpc.is_last_rank(ParallelMode.PIPELINE):
if isinstance(output_obj, torch.Tensor):
bt_shapes = output_obj.shape
else:
bt_shapes = []
for out_tensor in output_obj:
bt_shapes.append(out_tensor.shape)
fs_checker = comm.send_obj_meta(output_obj, fs_checker)
comm.send_forward(output_obj, scatter_gather_tensors=self.scatter_gather_tensors)
if not forward_only:
input_objs.append(input_obj)
output_objs.append(output_obj)
# Before running 1F1B, need to receive first forward tensor.
# If all microbatches are run in warmup / cooldown phase, then no need to
# receive this tensor here.
if num_microbatches_remaining > 0:
if not gpc.is_first_rank(ParallelMode.PIPELINE):
ft_shapes = comm.recv_obj_meta(ft_shapes)
input_obj = comm.recv_forward(ft_shapes,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
# Run 1F1B in steady state.
for i in range(num_microbatches_remaining):
last_iteration = (i == (num_microbatches_remaining - 1))
output_obj = self._forward_step(engine,
input_obj,
return_tensors,
return_output_label=return_output_label,
accum_loss=accum_loss)
if forward_only:
comm.send_forward(output_obj, scatter_gather_tensors=self.scatter_gather_tensors)
if not last_iteration:
input_obj = comm.recv_forward(ft_shapes,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
else:
output_obj_grad = comm.send_forward_recv_backward(output_obj,
bt_shapes,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
# Add input_obj and output_obj to end of list.
input_objs.append(input_obj)
output_objs.append(output_obj)
# Pop output_obj and output_obj from the start of the list for
# the backward pass.
input_obj = input_objs.pop(0)
output_obj = output_objs.pop(0)
input_obj_grad = self._backward_step(engine, input_obj, output_obj, output_obj_grad)
if last_iteration:
input_obj = None
comm.send_backward(input_obj_grad, scatter_gather_tensors=self.scatter_gather_tensors)
else:
input_obj = comm.send_backward_recv_forward(input_obj_grad,
ft_shapes,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
# Run cooldown backward passes.
if not forward_only:
for i in range(num_warmup_microbatches):
input_obj = input_objs.pop(0)
output_obj = output_objs.pop(0)
output_obj_grad = comm.recv_backward(bt_shapes,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
input_obj_grad = self._backward_step(engine, input_obj, output_obj, output_obj_grad)
comm.send_backward(input_obj_grad, scatter_gather_tensors=self.scatter_gather_tensors)
if len(return_tensors) > 0:
output, label = pack_return_tensors(return_tensors)
return output, label, accum_loss
else:
return None, None, accum_loss
class InterleavedPipelineSchedule(PipelineSchedule):
def __init__(self,
num_microbatches: int,
num_model_chunks: int,
data_process_func: Callable = None,
tensor_shape: Union[torch.Size, List[int], Tuple[int]] = None,
scatter_gather_tensors: bool = False):
"""A helper schedule class for pipeline parallelism running environment.
It uses interleaved 1F1B strategy. Other properties are similar as
:class:`NonPipelineSchedule`.
Args:
num_microbatches (int): The number of microbatches.
num_model_chunks (int): The number of model chunks.
data_process_func (Callable, optional):
The preprocessing function which receives a batch of data, and it will be executed in `load_batch`.
tensor_shape (torch.Size, optional): Specified shape in pipeline communication.
scatter_gather_tensors (bool, optional):
If set to `True`, communication will be reduced over pipeline when using 1D tensor parallelization.
"""
assert num_microbatches % gpc.get_world_size(ParallelMode.PIPELINE) == 0, \
'num_microbatches must be an integer multiple of pipeline parallel world size'
assert isinstance(num_model_chunks, int) and num_model_chunks > 0, \
f'expected num_model_chunks to be an integer and larger than 0, but got {num_model_chunks}'
super().__init__(num_microbatches,
data_process_func=data_process_func,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather_tensors)
gpc.set_virtual_pipeline_parallel_size(num_model_chunks)
gpc.set_virtual_pipeline_parallel_rank(0)
self.num_model_chunks = num_model_chunks
def pre_processing(self, engine):
from colossalai.zero.sharded_model.sharded_model_v2 import ShardedModelV2
if isinstance(engine.model, ShardedModelV2):
self.dtype = torch.half
elif isinstance(engine.model[0], NaiveAMPModel):
self.dtype = torch.half
for model in engine.model:
if isinstance(model, NaiveAMPModel):
model = model.model
sig = inspect.signature(model.forward)
for p in sig.parameters.values():
assert p.kind != inspect.Parameter.VAR_POSITIONAL, '*args is not supported'
def load_batch(self, data_iter):
super().load_batch(data_iter)
# overwrite microbatch_offset, since model chunks load the same microbatch, and should tract the offset
self.microbatch_offset = [0 for _ in range(self.num_model_chunks)]
def load_micro_batch(self, model_chunk_id):
data = self._get_data_slice(self.batch_data, self.microbatch_offset[model_chunk_id])
self.microbatch_offset[model_chunk_id] += self.microbatch_size
return self._move_to_device(data)
def _forward_step(self,
engine,
model_chunk_id,
input_obj,
return_tensors,
return_output_label=True,
accum_loss=None):
"""Forward step for passed-in model. If it is the first stage, the input tensor
is obtained from data_iterator, otherwise the passed-in input_obj is used.
Returns output tensor. This is a helper function and can be ignored by users.
Args:
engine (colossalai.engine.Engine): Colossalai engine for training and inference.
model_chunk_id (int): The id of model chunks.
input_obj (Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]): Input tensor for this pipeline stage.
return_tensors (List[:class:`torch.Tensor`]): A list of tensors to return.
return_output_label (bool, optional): Whether returns output labels.
accum_loss (optional): Where accumulated loss stores.
Returns:
Union[:class:`torch.Tensor`, List[:class:`torch.Tensor`]]: output or the loss value of the current pipeline stage.
"""
micro_batch_data = self.load_micro_batch(model_chunk_id)
data, label = self._get_data_label_for_current_step(input_obj, micro_batch_data, engine.criterion,
engine.model[model_chunk_id])
output_obj = self._call_engine(engine.model[model_chunk_id], data)
if gpc.is_pipeline_last_stage():
if return_output_label:
return_tensors.append((output_obj, label))
if accum_loss is not None:
loss_reduced = self._call_engine_criterion(engine, output_obj, label) / self.num_microbatches
accum_loss.add_(loss_reduced.detach())
return loss_reduced
else:
# forward only, it's useless since backward is not needed
return output_obj
else:
if isinstance(output_obj, torch.Tensor):
self._logger.debug(
f'Global rank {gpc.get_global_rank()}, pipeline rank {gpc.get_local_rank(ParallelMode.PIPELINE)} forward output tensor {output_obj.shape}, dtype {output_obj.dtype}'
)
return output_obj
def forward_backward_step(self, engine, data_iter, forward_only=False, return_loss=True, return_output_label=True):
"""Run interleaved 1F1B schedule (model split into model chunks), with
communication between pipeline stages as needed.
Args:
engine (colossalai.engine.Engine): Colossalai engine for training and inference.
data_iter (Iterable): Dataloader as the form of an iterator, obtained by calling iter(dataloader).
forward_only (bool, optional):
Whether run forward step only. Default is false. If true, no backward will be run.
return_loss (bool, optional): Whether returns the loss value. Default is true.
return_output_label (bool, optional): If False, the output and label won't be returned.
Returns:
Tuple[:class:`torch.Tensor`]: A tuple of (output, label, loss), loss and label could be None.
The loss would be returned only in the last stage.
"""
assert forward_only or return_loss, \
'The argument \'return_loss\' has to be True when \'forward_only\' is False, but got False.'
self.load_batch(data_iter)
model = engine.model
input_objs = [[] for _ in range(len(model))]
output_objs = [[] for _ in range(len(model))]
return_tensors = []
if not forward_only:
output_obj_grads = [[] for _ in range(len(model))]
if return_loss and gpc.is_pipeline_last_stage(ignore_virtual=True):
accum_loss = torch.zeros(1, device=get_current_device())
else:
accum_loss = None
# Used for obj meta information communication
input_obj_shapes = [self.tensor_shape for _ in range(len(model))]
output_obj_shapes = [None for _ in range(len(model))]
send_tensor_shape_flags = [self.tensor_shape is None for _ in range(len(model))]
pipeline_parallel_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_parallel_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
# Compute number of warmup and remaining microbatches.
num_model_chunks = len(model)
num_microbatches = self.num_microbatches * num_model_chunks
all_warmup_microbatches = False
if forward_only:
num_warmup_microbatches = num_microbatches
else:
# Run all forward passes and then all backward passes if number of
# microbatches is just the number of pipeline stages.
# Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
# all workers, followed by more microbatches after depending on
# stage ID (more forward passes for earlier stages, later stages can
# immediately start with 1F1B).
if self.num_microbatches == pipeline_parallel_size:
num_warmup_microbatches = num_microbatches
all_warmup_microbatches = True
else:
num_warmup_microbatches = \
(pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
num_warmup_microbatches += (num_model_chunks - 1) * pipeline_parallel_size
num_warmup_microbatches = min(num_warmup_microbatches, num_microbatches)
num_microbatches_remaining = \
num_microbatches - num_warmup_microbatches
def get_model_chunk_id(microbatch_id, forward):
"""Helper method to get the model chunk ID given the iteration number."""
microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
if not forward:
model_chunk_id = (num_model_chunks - model_chunk_id - 1)
return model_chunk_id
def _forward_step_helper(microbatch_id):
"""Helper method to run forward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling
forward_step())."""
model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
gpc.set_virtual_pipeline_parallel_rank(model_chunk_id)
# forward step
if gpc.is_pipeline_first_stage():
if len(input_objs[model_chunk_id]) == \
len(output_objs[model_chunk_id]):
input_objs[model_chunk_id].append(None)
input_obj = input_objs[model_chunk_id][-1]
output_obj = self._forward_step(engine,
model_chunk_id,
input_obj,
return_tensors,
return_output_label=return_output_label,
accum_loss=accum_loss)
output_objs[model_chunk_id].append(output_obj)
# if forward-only, no need to save tensors for a backward pass
if forward_only:
input_objs[model_chunk_id].pop()
output_objs[model_chunk_id].pop()
return output_obj
def _backward_step_helper(microbatch_id):
"""Helper method to run backward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling
backward_step())."""
model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
gpc.set_virtual_pipeline_parallel_rank(model_chunk_id)
if gpc.is_pipeline_last_stage():
if len(output_obj_grads[model_chunk_id]) == 0:
output_obj_grads[model_chunk_id].append(None)
input_obj = input_objs[model_chunk_id].pop(0)
output_obj = output_objs[model_chunk_id].pop(0)
output_obj_grad = output_obj_grads[model_chunk_id].pop(0)
input_obj_grad = self._backward_step(engine, input_obj, output_obj, output_obj_grad)
return input_obj_grad
# Run warmup forward passes.
gpc.set_virtual_pipeline_parallel_rank(0)
if not gpc.is_pipeline_first_stage():
input_obj_shapes[0] = comm.recv_obj_meta(input_obj_shapes[0])
input_objs[0].append(
comm.recv_forward(input_obj_shapes[0], dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors))
for k in range(num_warmup_microbatches):
model_chunk_id = get_model_chunk_id(k, forward=True)
output_obj = _forward_step_helper(k)
if not gpc.is_pipeline_last_stage():
if isinstance(output_obj, torch.Tensor):
output_obj_shapes[model_chunk_id] = output_obj.shape
else:
output_obj_shapes[model_chunk_id] = []
for out_tensor in output_obj:
output_obj_shapes[model_chunk_id].append(out_tensor.shape)
send_tensor_shape_flags[model_chunk_id] = comm.send_obj_meta(output_obj,
send_tensor_shape_flags[model_chunk_id])
# Determine if tensor should be received from previous stage.
next_forward_model_chunk_id = get_model_chunk_id(k + 1, forward=True)
recv_prev = True
if gpc.is_pipeline_first_stage(ignore_virtual=True):
if next_forward_model_chunk_id == 0:
recv_prev = False
if k == (num_microbatches - 1):
recv_prev = False
# Don't send tensor downstream if on last stage.
if gpc.is_pipeline_last_stage():
output_obj = None
with switch_virtual_pipeline_parallel_rank(next_forward_model_chunk_id):
if not gpc.is_pipeline_first_stage():
input_obj_shapes[next_forward_model_chunk_id] = comm.recv_obj_meta(
input_obj_shapes[next_forward_model_chunk_id])
# Send and receive tensors as appropriate (send tensors computed
# in this iteration; receive tensors for next iteration).
input_shape = input_obj_shapes[next_forward_model_chunk_id] if recv_prev else None
if k == (num_warmup_microbatches - 1) and not forward_only and \
not all_warmup_microbatches:
input_obj_grad = None
recv_next = True
if gpc.is_pipeline_last_stage(ignore_virtual=True):
recv_next = False
output_shape = output_obj_shapes[num_model_chunks - 1] if recv_next else None
input_obj, output_obj_grad = \
comm.send_forward_backward_recv_forward_backward(
output_obj, input_obj_grad,
input_shape,
output_shape,
recv_prev=recv_prev, recv_next=recv_next,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
output_obj_grads[num_model_chunks - 1].append(output_obj_grad)
else:
input_obj = \
comm.send_forward_recv_forward(
output_obj,
input_shape,
recv_prev=recv_prev,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
input_objs[next_forward_model_chunk_id].append(input_obj)
# Run 1F1B in steady state.
for k in range(num_microbatches_remaining):
# Forward pass.
forward_k = k + num_warmup_microbatches
output_obj = _forward_step_helper(forward_k)
# Backward pass.
backward_k = k
input_obj_grad = _backward_step_helper(backward_k)
# Send output_obj and input_obj_grad, receive input_obj
# and output_obj_grad.
# Determine if current stage has anything to send in either direction,
# otherwise set obj to None.
forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
gpc.set_virtual_pipeline_parallel_rank(forward_model_chunk_id)
if gpc.is_pipeline_last_stage():
output_obj = None
backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
gpc.set_virtual_pipeline_parallel_rank(backward_model_chunk_id)
if gpc.is_pipeline_first_stage():
input_obj_grad = None
# Determine if peers are sending, and where in data structure to put
# received tensors.
recv_prev = True
if gpc.is_pipeline_first_stage(ignore_virtual=True):
# First stage is ahead of last stage by (pipeline_parallel_size - 1).
next_forward_model_chunk_id = get_model_chunk_id(forward_k - (pipeline_parallel_size - 1), forward=True)
if next_forward_model_chunk_id == (num_model_chunks - 1):
recv_prev = False
next_forward_model_chunk_id += 1
else:
next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1, forward=True)
recv_next = True
if gpc.is_pipeline_last_stage(ignore_virtual=True):
# Last stage is ahead of first stage by (pipeline_parallel_size - 1).
next_backward_model_chunk_id = get_model_chunk_id(backward_k - (pipeline_parallel_size - 1),
forward=False)
if next_backward_model_chunk_id == 0:
recv_next = False
next_backward_model_chunk_id -= 1
else:
next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1, forward=False)
# If last iteration, don't receive; we already received one extra
# before the start of the for loop.
if k == (num_microbatches_remaining - 1):
recv_prev = False
input_shape = input_obj_shapes[next_forward_model_chunk_id] if recv_prev else None
output_shape = output_obj_shapes[next_backward_model_chunk_id] if recv_next else None
# Communicate objs.
input_obj, output_obj_grad = \
comm.send_forward_backward_recv_forward_backward(
output_obj, input_obj_grad,
input_shape,
output_shape,
recv_prev=recv_prev, recv_next=recv_next,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors)
# Put input_obj and output_obj_grad in data structures in the
# right location.
if recv_prev:
input_objs[next_forward_model_chunk_id].append(input_obj)
if recv_next:
output_obj_grads[next_backward_model_chunk_id].append(output_obj_grad)
# Run cooldown backward passes (flush out pipeline).
if not forward_only:
if all_warmup_microbatches:
output_obj_grads[num_model_chunks - 1].append(
comm.recv_backward(output_obj_shapes[num_model_chunks - 1],
scatter_gather_tensors=self.scatter_gather_tensors))
for k in range(num_microbatches_remaining, num_microbatches):
input_obj_grad = _backward_step_helper(k)
next_backward_model_chunk_id = get_model_chunk_id(k + 1, forward=False)
recv_next = True
if gpc.is_pipeline_last_stage(ignore_virtual=True):
if next_backward_model_chunk_id == (num_model_chunks - 1):
recv_next = False
if k == (num_microbatches - 1):
recv_next = False
output_shape = output_obj_shapes[next_backward_model_chunk_id] if recv_next else None
output_obj_grads[next_backward_model_chunk_id].append(
comm.send_backward_recv_backward(input_obj_grad,
output_shape,
recv_next=recv_next,
dtype=self.dtype,
scatter_gather_tensors=self.scatter_gather_tensors))
if len(return_tensors) > 0:
output, label = pack_return_tensors(return_tensors)
return output, label, accum_loss
else:
return None, None, accum_loss