mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
257 lines
12 KiB
257 lines
12 KiB
from copy import deepcopy
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
from torch.fx.node import Node
|
|
|
|
from colossalai._analyzer.fx.node_util import MetaInfo
|
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
|
CommAction,
|
|
CommType,
|
|
OperationData,
|
|
OperationDataType,
|
|
TrainCycleItem,
|
|
)
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
from colossalai.tensor.comm_spec import CommSpec
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
|
|
shape_consistency_manager = ShapeConsistencyManager()
|
|
|
|
|
|
def runtime_apply(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int, user_node_index: int):
|
|
"""
|
|
This method will be invoked during runtime to do the shape consistency, which make sure the activations is converted into
|
|
the user node expected form.
|
|
"""
|
|
origin_sharding_spec = origin_dict[node_index]
|
|
target_sharding_spec = input_dict[node_index][user_node_index]
|
|
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
|
|
|
|
|
|
def runtime_apply_for_iterable_object(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int,
|
|
user_node_index: int):
|
|
"""
|
|
This method will be invoked during runtime to do the shape consistency, which makes sure the activations in type of tuple or list
|
|
is converted into the user node expected form.
|
|
"""
|
|
rst = []
|
|
for index, (origin_sharding_spec,
|
|
target_sharding_spec) in enumerate(zip(origin_dict[node_index],
|
|
input_dict[node_index][user_node_index])):
|
|
rst.append(
|
|
shape_consistency_manager.apply_for_autoparallel_runtime(node[index], origin_sharding_spec,
|
|
target_sharding_spec))
|
|
rst = type(node)(rst)
|
|
return rst
|
|
|
|
|
|
def runtime_comm_spec_apply(tensor: torch.Tensor, comm_actions_dict: Dict, node_index: int, op_data_name: str):
|
|
"""
|
|
This method will be invoked during runtime to apply the comm action following the instruction of comm spec.
|
|
"""
|
|
comm_action = comm_actions_dict[node_index][op_data_name]
|
|
if isinstance(comm_action.comm_spec, CommSpec):
|
|
rst = comm_action.comm_spec.covert_spec_to_action(tensor)
|
|
else:
|
|
origin_sharding_spec = comm_action.comm_spec['src_spec']
|
|
tgt_sharding_spec = comm_action.comm_spec['tgt_spec']
|
|
rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec)
|
|
return rst
|
|
|
|
|
|
def _preprocess_graph(nodes: List[Node]):
|
|
"""
|
|
This method is used to extract all the placeholders with sharding information,
|
|
and mapping the nodes into the index of the origin graph.
|
|
"""
|
|
# mapping the node into the origin graph index
|
|
node_to_index_dict = {}
|
|
index = 0
|
|
for node in nodes:
|
|
if node.target == 'sharding_spec_convert_dict':
|
|
input_dict_node = node
|
|
continue
|
|
if node.target == 'origin_node_sharding_spec_dict':
|
|
origin_dict_node = node
|
|
continue
|
|
if node.target == 'comm_actions_dict':
|
|
comm_actions_dict_node = node
|
|
continue
|
|
if not hasattr(node, 'best_strategy'):
|
|
continue
|
|
node_to_index_dict[node] = index
|
|
index += 1
|
|
|
|
return input_dict_node, origin_dict_node, comm_actions_dict_node, node_to_index_dict
|
|
|
|
|
|
def _shape_consistency_apply(gm: torch.fx.GraphModule):
|
|
"""
|
|
This pass is used to add the shape consistency node to the origin graph.
|
|
"""
|
|
mod_graph = gm.graph
|
|
nodes = tuple(mod_graph.nodes)
|
|
|
|
input_dict_node, origin_dict_node, _, node_to_index_dict = _preprocess_graph(nodes)
|
|
|
|
for node in nodes:
|
|
if not hasattr(node, 'best_strategy') or node.op == 'output':
|
|
continue
|
|
|
|
for user_node_index, user_node in enumerate(node.strategies_vector.successor_nodes):
|
|
if isinstance(node.sharding_spec, (list, tuple)):
|
|
assert isinstance(
|
|
node.target_sharding_specs,
|
|
(list,
|
|
tuple)), 'target sharding specs should be tuple or list when node.sharding_spec is tuple or list'
|
|
total_difference = 0
|
|
for sharding_spec, target_sharding_spec in zip(node.sharding_spec,
|
|
node.target_sharding_specs[user_node_index]):
|
|
total_difference += sharding_spec.sharding_sequence_difference(target_sharding_spec)
|
|
if total_difference == 0:
|
|
continue
|
|
with mod_graph.inserting_before(user_node):
|
|
shape_consistency_node = mod_graph.create_node('call_function',
|
|
runtime_apply_for_iterable_object,
|
|
args=(node, origin_dict_node, input_dict_node,
|
|
node_to_index_dict[node], user_node_index))
|
|
|
|
else:
|
|
assert isinstance(node.sharding_spec,
|
|
ShardingSpec), 'node.sharding_spec should be type of ShardingSpec, tuple or list.'
|
|
if node.sharding_spec.sharding_sequence_difference(node.target_sharding_specs[user_node_index]) == 0:
|
|
continue
|
|
with mod_graph.inserting_before(user_node):
|
|
shape_consistency_node = mod_graph.create_node('call_function',
|
|
runtime_apply,
|
|
args=(node, origin_dict_node, input_dict_node,
|
|
node_to_index_dict[node], user_node_index))
|
|
if hasattr(user_node.meta['info'], 'activation_checkpoint'):
|
|
MetaInfo(shape_consistency_node,
|
|
mod_dir=user_node.meta['info'].mod_dir,
|
|
activation_checkpoint=tuple(user_node.meta['info'].activation_checkpoint))
|
|
new_args = list(user_node.args)
|
|
new_kwargs = dict(user_node.kwargs)
|
|
# the origin node may be a positional argument or key word argument of user node
|
|
if node in new_args:
|
|
# substitute the origin node with shape_consistency_node
|
|
origin_index_args = new_args.index(node)
|
|
new_args[origin_index_args] = shape_consistency_node
|
|
user_node.args = tuple(new_args)
|
|
elif str(node) in new_kwargs:
|
|
# substitute the origin node with shape_consistency_node
|
|
new_kwargs[str(node)] = shape_consistency_node
|
|
user_node.kwargs = new_kwargs
|
|
|
|
return gm
|
|
|
|
|
|
def _comm_spec_apply(gm: torch.fx.GraphModule):
|
|
"""
|
|
This pass is used to add the comm spec apply node to the origin graph.
|
|
"""
|
|
mod_graph = gm.graph
|
|
nodes = tuple(mod_graph.nodes)
|
|
|
|
_, _, comm_actions_dict_node, node_to_index_dict = _preprocess_graph(nodes)
|
|
|
|
for node in nodes:
|
|
if not hasattr(node, 'best_strategy') or node.op == 'output':
|
|
continue
|
|
|
|
comm_actions = node.best_strategy.communication_actions
|
|
for op_data, comm_action in comm_actions.items():
|
|
|
|
if comm_action.comm_type == CommType.HOOK:
|
|
continue
|
|
if comm_action.comm_type == CommType.BEFORE:
|
|
if op_data.type == OperationDataType.OUTPUT:
|
|
comm_object = node
|
|
elif comm_action.key_for_kwarg is not None:
|
|
comm_object = node.kwargs[comm_action.key_for_kwarg]
|
|
else:
|
|
comm_object = node.args[comm_action.arg_index]
|
|
with mod_graph.inserting_before(node):
|
|
comm_spec_apply_node = mod_graph.create_node('call_function',
|
|
runtime_comm_spec_apply,
|
|
args=(comm_object, comm_actions_dict_node,
|
|
node_to_index_dict[node], op_data.name))
|
|
# the origin node may be a positional argument or key word argument of user node
|
|
if comm_action.key_for_kwarg is not None:
|
|
# substitute the origin node with comm_spec_apply_node
|
|
new_kwargs = dict(node.kwargs)
|
|
new_kwargs[comm_action.key_for_kwarg] = comm_spec_apply_node
|
|
node.kwargs = new_kwargs
|
|
else:
|
|
# substitute the origin node with comm_spec_apply_node
|
|
new_args = list(node.args)
|
|
new_args[comm_action.arg_index] = comm_spec_apply_node
|
|
node.args = tuple(new_args)
|
|
|
|
elif comm_action.comm_type == CommType.AFTER:
|
|
with mod_graph.inserting_after(node):
|
|
comm_spec_apply_node = mod_graph.create_node('call_function',
|
|
runtime_comm_spec_apply,
|
|
args=(node, comm_actions_dict_node,
|
|
node_to_index_dict[node], op_data.name))
|
|
user_list = list(node.users.keys())
|
|
for user in user_list:
|
|
if user == comm_spec_apply_node:
|
|
continue
|
|
new_args = list(user.args)
|
|
new_kwargs = dict(user.kwargs)
|
|
# the origin node may be a positional argument or key word argument of user node
|
|
if node in new_args:
|
|
# substitute the origin node with comm_spec_apply_node
|
|
new_args[new_args.index(node)] = comm_spec_apply_node
|
|
user.args = tuple(new_args)
|
|
elif str(node) in new_kwargs:
|
|
# substitute the origin node with comm_spec_apply_node
|
|
new_kwargs[str(node)] = comm_spec_apply_node
|
|
user.kwargs = new_kwargs
|
|
if hasattr(node.meta['info'], 'activation_checkpoint'):
|
|
MetaInfo(comm_spec_apply_node,
|
|
mod_dir=node.meta['info'].mod_dir,
|
|
activation_checkpoint=tuple(node.meta['info'].activation_checkpoint))
|
|
|
|
return gm
|
|
|
|
|
|
def _act_annotation_pass(gm: torch.fx.GraphModule):
|
|
"""
|
|
This pass is used to add the act annotation to the new inserted nodes.
|
|
"""
|
|
mod_graph = gm.graph
|
|
nodes = tuple(mod_graph.nodes)
|
|
|
|
for node in nodes:
|
|
if not hasattr(node.meta, 'activation_checkpoint'):
|
|
from .runtime_preparation_pass import size_processing
|
|
|
|
user_act_annotation = -1
|
|
input_act_annotation = -1
|
|
for user_node in node.users.keys():
|
|
if 'activation_checkpoint' in user_node.meta:
|
|
user_act_annotation = user_node.meta['activation_checkpoint']
|
|
break
|
|
for input_node in node._input_nodes.keys():
|
|
if 'activation_checkpoint' in input_node.meta:
|
|
input_act_annotation = input_node.meta['activation_checkpoint']
|
|
break
|
|
if user_act_annotation == input_act_annotation and user_act_annotation != -1:
|
|
node.meta['activation_checkpoint'] = user_act_annotation
|
|
|
|
return gm
|
|
|
|
|
|
def runtime_apply_pass(gm: torch.fx.GraphModule):
|
|
"""
|
|
The method manages all the passes acting on the distributed training runtime.
|
|
"""
|
|
gm = _shape_consistency_apply(gm)
|
|
gm = _comm_spec_apply(gm)
|
|
|
|
return gm
|