mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
6.8 KiB
177 lines
6.8 KiB
from typing import Dict, Tuple
|
|
from enum import Enum
|
|
import torch
|
|
from torch.optim import Optimizer
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
|
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
|
|
from colossalai.utils import get_current_device
|
|
|
|
from .base_offload_module import BaseOffloadModule
|
|
from .region_manager import RegionManager
|
|
from .region import Region
|
|
|
|
|
|
class OptimState(Enum):
|
|
SCALED = 0
|
|
UNSCALED = 1
|
|
|
|
class AMPOptimizer(ColossalaiOptimizer):
|
|
|
|
"""
|
|
A wrapper for Optimizer.
|
|
Code reference: https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/optimizer/zero_optimizer.py
|
|
|
|
Args:
|
|
optimizer (Optimizer): An Optimizer instance.
|
|
module (BaseOffloadModule): A ``BaseOffloadModule`` instance.
|
|
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**16.
|
|
growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2.
|
|
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5.
|
|
growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000.
|
|
hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2.
|
|
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1.
|
|
max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32.
|
|
norm_type (float, optional): norm_type used for `clip_grad_norm`.
|
|
"""
|
|
|
|
def __init__(self,
|
|
optimizer: Optimizer,
|
|
module: BaseOffloadModule,
|
|
initial_scale: float = 2**16,
|
|
growth_factor: float = 2,
|
|
backoff_factor: float = 0.5,
|
|
growth_interval: int = 1000,
|
|
hysteresis: int = 2,
|
|
min_scale: float = 1,
|
|
max_scale: float = 2**32,
|
|
clipping_norm: float = 0.0,
|
|
norm_type: float = 2.0):
|
|
|
|
super().__init__(optimizer)
|
|
|
|
self.module = module
|
|
self.optim_state = OptimState.UNSCALED
|
|
self.clipping_flag = clipping_norm > 0.0
|
|
self.max_norm = clipping_norm
|
|
|
|
self.region_manager: RegionManager = self.module.region_manager
|
|
self.param_to_range: Dict[torch.nn.Parameter, Tuple[int, int]] = dict()
|
|
self.param_to_region: Dict[torch.nn.Parameter, Region] = dict()
|
|
|
|
self.fp32_to_fp16_params: Dict[torch.Tensor, torch.nn.Parameter] = dict()
|
|
|
|
if self.clipping_flag:
|
|
assert norm_type == 2.0, "AMPOptimizer only supports L2 norm now"
|
|
|
|
self.__init__optimizer()
|
|
|
|
# Grad scaler
|
|
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
|
|
min_scale=min_scale,
|
|
growth_factor=growth_factor,
|
|
backoff_factor=backoff_factor,
|
|
growth_interval=growth_interval,
|
|
hysteresis=hysteresis,
|
|
max_scale=max_scale)
|
|
self._found_overflow: torch.Tensor = torch.zeros(1, dtype=torch.int64, device=get_current_device())
|
|
self._logger = get_dist_logger()
|
|
|
|
def _set_grad_ptr(self):
|
|
for group in self.param_groups:
|
|
for fake_param in group['params']:
|
|
region = self.param_to_region[fake_param]
|
|
begin, end = self.param_to_range[fake_param]
|
|
|
|
fake_param.data = region.cpu_grad[begin:end]
|
|
fake_param.grad = fake_param.data
|
|
fake_param.data = region.fp32_data[begin:end]
|
|
|
|
def _update_fp16_params(self):
|
|
none_tensor = torch.empty([0])
|
|
for group in self.param_groups:
|
|
for fake_param in group['params']:
|
|
assert fake_param.grad is None
|
|
fake_param.data = none_tensor
|
|
self.param_to_region[fake_param].cpu_grad = None
|
|
|
|
def _check_overflow(self):
|
|
# clear previous overflow record
|
|
self._found_overflow.fill_(self.module.overflow_counter.item())
|
|
return self._found_overflow.item() > 0
|
|
|
|
def _get_combined_scale(self):
|
|
loss_scale = 1
|
|
|
|
if self.optim_state == OptimState.SCALED:
|
|
loss_scale = self.loss_scale
|
|
self.optim_state = OptimState.UNSCALED
|
|
|
|
combined_scale = loss_scale
|
|
|
|
if combined_scale == 1:
|
|
return -1
|
|
else:
|
|
return combined_scale
|
|
|
|
@property
|
|
def loss_scale(self):
|
|
return self.grad_scaler.scale.item()
|
|
|
|
def zero_grad(self, *args, **kwargs):
|
|
self.module.overflow_counter = torch.cuda.IntTensor([0])
|
|
return self.optim.zero_grad(set_to_none=True)
|
|
|
|
def step(self, *args, **kwargs):
|
|
# Copy gradients from model params to main params.
|
|
self._set_grad_ptr()
|
|
|
|
found_inf = self._check_overflow()
|
|
if found_inf:
|
|
self.optim_state = OptimState.UNSCALED # no need to unscale grad
|
|
self.grad_scaler.update(found_inf) # update gradient scaler
|
|
self._logger.info(f'Found overflow. Skip step')
|
|
self.zero_grad() # reset all gradients
|
|
self._update_fp16_params()
|
|
return
|
|
|
|
# get combined scale. combined scale = loss scale * clipping norm
|
|
# so that gradient = gradient / combined scale
|
|
combined_scale = self._get_combined_scale()
|
|
self.grad_scaler.update(found_inf)
|
|
|
|
ret = self.optim.step(div_scale=combined_scale, *args, **kwargs)
|
|
self.zero_grad()
|
|
self._update_fp16_params()
|
|
return ret
|
|
|
|
def clip_grad_norm(self, model: torch.nn.Module, max_norm: float, norm_type: float = 2.0):
|
|
raise NotImplementedError
|
|
|
|
def backward(self, loss: torch.Tensor):
|
|
loss = self.loss_scale * loss
|
|
self.optim_state = OptimState.SCALED
|
|
self.module.backward(loss)
|
|
|
|
def __init__optimizer(self):
|
|
|
|
for group in self.optim.param_groups:
|
|
fake_params_list = list()
|
|
|
|
for param in group['params']:
|
|
region = self.region_manager.get_region(param)
|
|
fake_param = torch.nn.Parameter(torch.empty([0]))
|
|
self.param_to_range[fake_param] = region.param_to_range[param]
|
|
self.param_to_region[fake_param] = region
|
|
fake_params_list.append(fake_param)
|
|
|
|
# Reset existing state dict key to the new main param.
|
|
if param in self.optim.state:
|
|
self.optim.state[fake_param] = self.optim.state.pop(param)
|
|
|
|
group['params'] = fake_params_list
|
|
|
|
# Leverage state_dict() and load_state_dict() to
|
|
# recast preexisting per-param state tensors
|
|
self.optim.load_state_dict(self.optim.state_dict()) |