Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

275 lines
10 KiB

import argparse
import time
from contextlib import nullcontext
import torch
import torch.distributed as dist
import transformers
from transformers import AutoTokenizer, GenerationConfig
from vllm import LLM, SamplingParams
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
GIGABYTE = 1024**3
MEGABYTE = 1024 * 1024
CONFIG_MAP = {
"toy": transformers.LlamaConfig(num_hidden_layers=4),
"llama-7b": transformers.LlamaConfig(
hidden_size=4096,
intermediate_size=11008,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=32,
max_position_embeddings=2048,
),
"llama-13b": transformers.LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_attention_heads=40,
num_hidden_layers=40,
num_key_value_heads=40,
max_position_embeddings=2048,
),
"llama2-7b": transformers.LlamaConfig(
hidden_size=4096,
intermediate_size=11008,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=32,
max_position_embeddings=4096,
),
"llama2-13b": transformers.LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_attention_heads=40,
num_hidden_layers=40,
num_key_value_heads=40,
max_position_embeddings=4096,
),
"llama3-8b": transformers.LlamaConfig(
hidden_size=4096,
intermediate_size=14336,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=8,
max_position_embeddings=8192,
),
"llama3-70b": transformers.LlamaConfig(
hidden_size=8192,
intermediate_size=28672,
num_attention_heads=64,
num_hidden_layers=80,
num_key_value_heads=8,
max_position_embeddings=8192,
),
}
def data_gen(batch_size: int = 4, seq_len: int = 512):
input_ids = torch.randint(10, 30000, (batch_size, seq_len), device=get_accelerator().get_current_device())
return input_ids
def print_details_info(model_config, args, whole_end2end, total_token_num):
msg: str = ""
if dist.get_rank() == 0:
msg += "-------Perf Summary-------\n"
whole_avg_latency = whole_end2end / (total_token_num)
num_layers = getattr(model_config, "num_layers", model_config.num_hidden_layers)
num_parameters = num_layers * model_config.hidden_size * model_config.hidden_size * 12
if args.dtype in ["fp16", "bf16"]:
num_bytes = 2
else:
num_bytes = 4
msg += f"Whole batch end2end time: {whole_end2end * 1000:.2f} ms\n"
msg += f"Whole batch per token latency: {whole_avg_latency * 1000:.2f} ms\n"
msg += f"Throughput: {total_token_num / whole_end2end:.2f} tokens/s\n"
msg += f"Flops: {num_parameters * num_bytes / whole_avg_latency / 1e12:.2f} TFLOPS\n"
if torch.cuda.is_available():
msg += f"-------Memory Summary Device:{get_accelerator().current_device()}-------\n"
msg += f"Max memory allocated: {get_accelerator().max_memory_allocated() / GIGABYTE:.2f} GB\n"
msg += f"Max memory reserved: {get_accelerator().max_memory_reserved() / GIGABYTE:.2f} GB\n"
print(msg)
def benchmark_inference(args):
with torch.no_grad():
config = CONFIG_MAP[args.model]
config.pad_token_id = config.eos_token_id
if args.mode != "vllm":
if args.test_random_weight:
model = transformers.LlamaForCausalLM(config).cuda()
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
else:
assert args.model_path, "When testing pretrained weights, the model path must be provided.'"
model = transformers.LlamaForCausalLM.from_pretrained(args.model_path).cuda()
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
model = model.eval()
if args.dtype == "fp16":
model = model.half()
elif args.dtype == "bf16":
model = model.to(torch.bfloat16)
generation_config = GenerationConfig(
pad_token_id=tokenizer.pad_token_id,
max_length=args.seq_len + args.output_len,
# max_new_tokens=args.max_output_len,
)
if args.continous_batching:
mbsz = args.mbsz
else:
mbsz = args.batch_size
if args.mode == "colossalai":
inference_config = InferenceConfig(
dtype=args.dtype,
max_batch_size=mbsz,
max_input_len=args.seq_len,
max_output_len=args.output_len,
prefill_ratio=1.2,
block_size=32,
tp_size=args.tp_size,
use_cuda_kernel=True,
)
engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
elif args.mode == "vllm":
engine = LLM(
model=args.model_path,
tokenizer="hf-internal-testing/llama-tokenizer",
max_num_seqs=mbsz,
dtype="float16",
enforce_eager=True,
)
sampling_params = SamplingParams(
max_tokens=args.output_len,
)
else:
engine = model
data = data_gen(mbsz, args.seq_len)
if args.mode == "colossalai" or args.mode == "vllm":
data = data.tolist()
N_WARMUP_STEPS = 2
ctx = (
torch.profiler.profile(
record_shapes=True,
with_stack=True,
with_modules=True,
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
schedule=torch.profiler.schedule(wait=0, warmup=N_WARMUP_STEPS, active=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler(f"./tb_log_{args.batch_size}_" + args.mode),
)
if args.profile
else nullcontext()
)
with ctx:
for _ in range(N_WARMUP_STEPS):
if args.mode == "colossalai":
engine.generate(prompts_token_ids=data, generation_config=generation_config)
elif args.mode == "vllm":
engine.generate(prompt_token_ids=data, sampling_params=sampling_params)
else:
engine.generate(data, generation_config=generation_config)
if args.profile:
ctx.step()
if args.nsys:
torch.cuda.cudart().cudaProfilerStart()
torch.cuda.synchronize()
whole_end2end = time.perf_counter()
if args.mode == "colossalai":
for _ in range(args.batch_size // mbsz):
output, output_tokens_list = engine.generate(
prompts_token_ids=data, generation_config=generation_config, return_token_ids=True
)
elif args.mode == "vllm":
for _ in range(args.batch_size // mbsz):
output = engine.generate(prompt_token_ids=data, sampling_params=sampling_params)
else:
for _ in range(args.batch_size // mbsz):
output = engine.generate(data, generation_config=generation_config)
whole_end2end = time.perf_counter() - whole_end2end
if args.mode == "colossalai":
total_token_num = sum([len(output_tokens) for output_tokens in output_tokens_list])
elif args.mode == "vllm":
total_token_num = sum([len(out.outputs[0].token_ids) for out in output])
else:
total_token_num = sum([len(out) for out in output])
print("total_token_num: ", total_token_num)
if args.nsys:
torch.cuda.cudart().cudaProfilerStop()
if args.profile:
ctx.step()
print(f"config:batch_size {args.batch_size}, input_len{ args.seq_len}, output_len {args.output_len}")
print_details_info(config, args, whole_end2end, total_token_num)
def hybrid_inference(rank, world_size, port, args):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
benchmark_inference(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def benchmark(args):
spawn(hybrid_inference, nprocs=args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
default="toy",
help="the size of model",
choices=["toy", "llama-7b", "llama-13b", "llama2-7b", "llama2-13b", "llama3-8b", "llama3-70b"],
)
parser.add_argument("--model_path", type=str, default=None, help="The pretrained weights path")
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size")
parser.add_argument("--mbsz", type=int, default=8, help="batch size for one step")
parser.add_argument("-s", "--seq_len", type=int, default=8, help="input sequence length")
parser.add_argument("--tp_size", type=int, default=1, help="Tensor Parallelism size")
parser.add_argument("--output_len", type=int, default=128, help="Output length")
parser.add_argument("--dtype", type=str, default="fp16", help="data type", choices=["fp16", "fp32", "bf16"])
parser.add_argument(
"--test_random_weight", default=False, action="store_true", help="whether to test random weight"
)
parser.add_argument("--profile", default=False, action="store_true", help="enable torch profiler")
parser.add_argument("--nsys", default=False, action="store_true", help="enable nsys profiler")
parser.add_argument(
"--mode",
default="colossalai",
choices=["colossalai", "transformers", "vllm"],
help="decide which inference framework to run",
)
parser.add_argument(
"-cb", "--continous_batching", default=False, action="store_true", help="enable continous batching"
)
args = parser.parse_args()
benchmark(args)