Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

501 lines
18 KiB

import time
from abc import ABC, abstractmethod
from typing import Dict, List, Type
NOT_NVML = False
try:
from pynvml import *
except:
NOT_NVML = True
import torch
from torch.fx.node import Node
from colossalai.accelerator import get_accelerator
from .region import Region
from .training_simulator import AsynTrainingSimulator, SynTrainingSimulator, TrainingSimulator
from .util import NodeInfo, NvDevicePower
def benchmark_func(func, number=1, repeat=1, warmup=3):
"""
benchmark data transfer cost.
"""
for i in range(warmup):
func()
costs = []
for i in range(repeat):
torch.cuda.synchronize()
begin = time.time()
for i in range(number):
func()
torch.cuda.synchronize()
costs.append((time.time() - begin) / number)
return sum(costs) / len(costs)
class Solver(ABC):
"""
The parameter offload solver.
Args:
region_list (List[Region]): represents the linearized DNN computing graph.
memory_budget (float): the given memory budget.
error_factor (float): the error factor.
It is used to reduce the memory budget. Due to some errors in the estimation of peak memory and execution time.
"""
def __init__(self, region_list: List[Region], memory_budget: float = -1.0, error_factor: float = 0.95) -> None:
self.region_list = region_list
self.error_factor: float = error_factor
if memory_budget > 0:
self.memory_budget = memory_budget * self.error_factor
else:
self.memory_budget = (
torch.cuda.get_device_properties(get_accelerator().get_current_device()).total_memory
* self.error_factor
)
self.link_to_bandwidth: Dict[str, Dict[float, float]] = self._profile_bandwidth()
self.comp_power: float = self._extract_computing_power()
@abstractmethod
def _call_solver(self):
raise NotImplementedError
@abstractmethod
def _try_to_offload(self, *args):
raise NotImplementedError
@abstractmethod
def _eval_one_choice(self, *args):
raise NotImplementedError
def _compute_offload_profit(self, total_mem_saving: float, peak_mem_saving: float, extra_cost: float):
"""
Compute the profits of the offload strategies,
which packages the memory savings information for subsequent comparisons.
Args:
total_mem_saving (float): the total memory saving of the offload strategy.
peak_mem_saving (float): the peak memory saving of the offload strategy.
extra_cost (float): extra data transfer cost.
Returns:
tuple: profit information, the first term represents memory savings per unit of time.
"""
if extra_cost == 0:
# means data transfer overhead can be completely overlapped
return (float("inf"), total_mem_saving, peak_mem_saving)
return (total_mem_saving / extra_cost, total_mem_saving, peak_mem_saving)
def _compare_profit(self, profit_a: tuple, profit_b: tuple) -> bool:
"""
Compare the profits of the two offload strategies using the dictionary order algorithm.
Args:
profit_a (tuple): the profit of a offload strategy.
profit_b (tuple): the profit of another offload strategy.
Returns:
bool: whether profit_a is greater than profit_b.
"""
for val1, val2 in zip(profit_a, profit_b):
if val1 != val2:
return val1 > val2
return False
def _update_state(self, best_ts: TrainingSimulator):
"""
Update the solver state.
"""
self.best_ts = best_ts
self._update_node_mem_info(best_ts.fwd_node_mem, best_ts.bwd_node_mem)
def _update_node_mem_info(self, fwd_mem_info: Dict[Node, float], bwd_mem_info: Dict[Node, float]):
"""
Update the runtime memory information of the node.
Args:
fwd_mem_info (Dict[Node, float]): the runtime memory of each node in forward pass.
bwd_mem_info (Dict[Node, float]): the runtime memory of each node in backward pass.
"""
for node, mem in fwd_mem_info.items():
assert hasattr(node, "node_info") and isinstance(node.node_info, NodeInfo)
node.node_info.runtime_fwd_mem = mem
for node, mem in bwd_mem_info.items():
assert hasattr(node, "node_info") and isinstance(node.node_info, NodeInfo)
node.node_info.runtime_bwd_mem = mem
def _extract_computing_power(self):
"""
return the FP16 computing performance of the current NVIDIA GPU.
Raises:
TypeError: Unknown NVIDIA GPU device.
"""
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
device_name = nvmlDeviceGetName(handle)
units = 1e12
if device_name.__contains__("RTX 3080"):
return NvDevicePower.RTX3080_FP16 * units
elif device_name.__contains__("RTX 3090"):
return NvDevicePower.RTX3090_FP16 * units
elif device_name.__contains__("V100"):
return NvDevicePower.V100_FP16 * units
elif device_name.__contains__("A100"):
return NvDevicePower.A100_FP16 * units
else:
raise TypeError(f"Unknown NVIDIA GPU device name {device_name}")
def _profile_bandwidth(self):
"""
Profile the bidirectional communication bandwidth between CPU and GPU
using data volumes ranging from 1KB to 1GB.
"""
print("profiling bandwidth ......")
link_to_bandwidth = {}
links = ["h2d", "d2h"]
for link in links:
t_size = 1024
size_to_bandwidth = {}
# from 1KB to 1GB
for i in range(21):
if link == "h2d":
src_tensor = torch.ones(int(t_size), dtype=torch.int8, pin_memory=True)
dst_tensor = torch.ones((int(t_size)), dtype=torch.int8, device="cuda")
elif link == "d2h":
src_tensor = torch.ones(int(t_size), dtype=torch.int8, device="cuda")
dst_tensor = torch.ones((int(t_size)), dtype=torch.int8, pin_memory=True)
def func():
dst_tensor.copy_(src_tensor)
size_to_bandwidth[t_size] = t_size / benchmark_func(func, number=5, repeat=3)
print(
f"size: {t_size / 1024 ** 2:.3f} MB, "
f"{src_tensor.device.type}-to-{dst_tensor.device.type} "
f"bandwidth: {size_to_bandwidth[t_size] / 1024 ** 3:.3f} GB/s"
)
t_size *= 2
link_to_bandwidth[link] = size_to_bandwidth
return link_to_bandwidth
class SynGreedySolver(Solver):
def __init__(self, region_list: List[Region], memory_budget: float = -1.0) -> None:
super().__init__(region_list, memory_budget)
self.best_ts: SynTrainingSimulator = None
self._init_state()
def _init_state(self):
"""
Initialize the solver state when without offloading.
"""
ts = SynTrainingSimulator(self.region_list, self.comp_power, self.link_to_bandwidth)
ts.execute()
self._update_state(ts)
def _call_solver(self):
"""
Call the solver to search an efficient parameter offloading strategy for the linearized graph.
The solver adopts greedy algorithm.
Raises:
NotImplementedError: Unable to find a solution for the given memory budget.
"""
print("search offloading strategy ......")
while self.best_ts.peak_mem > self.memory_budget:
offload_region = None
best_ts = None
max_profit = (0,)
# search which region should be offloaded,
# the last region does not need to be offloaded.
for region in self.region_list[:-1]:
if region.param_size and not region.need_offload:
temp_ts, profit = self._try_to_offload(region)
if self._compare_profit(profit, max_profit):
offload_region = region
max_profit = profit
best_ts = temp_ts
if offload_region is not None and best_ts is not None:
offload_region.need_offload = True
offload_region.is_syn = True
self._update_state(best_ts)
else:
raise NotImplementedError(
f"can't find the offload strategy met the memory budget {self.memory_budget / 1024 ** 2} MB, "
f"it needs {self.best_ts.peak_mem / 1024 ** 2:.3f} MB at least!"
)
def _call_solver_l2l(self):
"""
The layer-wise offload strategy.
"""
for region in self.region_list[:-1]:
region.need_offload = True
region.is_syn = True
def _try_to_offload(self, offload_region: Region):
# record previous information
orig_need_offload = offload_region.need_offload
assert not orig_need_offload
offload_region.need_offload = True
ts, profit = self._eval_one_choice(offload_region)
# restore previous information
offload_region.need_offload = orig_need_offload
return ts, profit
def _eval_one_choice(self, offload_region: Region):
"""
Evaluate the profit of a strategy choice.
Args:
offload_region (Region): the offload region of current choice.
Returns:
SynTrainingSimulator: the training simulator corresponding to the current strategy.
tuple: contains memory saving and cost information of the current strategy.
"""
ts = SynTrainingSimulator(self.region_list, self.comp_power, self.link_to_bandwidth)
ts.execute()
extra_comm_cost = 2.0 * ts._get_communication_overhead("h2d", offload_region.param_size)
# the shared region needs to be moved twice
if offload_region.r_id < offload_region.shared_rid:
extra_comm_cost *= 2.0
profit = self._compute_offload_profit(ts.total_mem_saving, self.best_ts.peak_mem - ts.peak_mem, extra_comm_cost)
return ts, profit
class AsynGreedySolver(Solver):
def __init__(self, region_list: List[Region], memory_budget: float = -1.0, search_window_size: int = 3):
super().__init__(region_list, memory_budget)
self.search_window_size = search_window_size
# Records the prefetch execution location of the offloaded region
self.region_to_region_map = {}
self.best_ts: AsynTrainingSimulator = None
self._init_state()
def _init_state(self):
"""
Initialize the solver state when without offloading.
"""
ts = AsynTrainingSimulator(self.region_list, self.comp_power, self.link_to_bandwidth)
ts.execute()
self._update_state(ts)
print("init peak memory", self.best_ts.peak_mem / 1024**2, "MB")
def _call_solver(self):
"""
Call the solver to search an efficient parameter offloading strategy for the linearized graph.
The solver adopts greedy algorithm.
Raises:
NotImplementedError: Unable to find a solution for the given memory budget.
"""
print("search for offloading strategy ......")
# Records the prefetch execution location of the offloaded region
region_to_region_map = {}
while self.best_ts.peak_mem > self.memory_budget:
region_to_offload = None
max_offload_profit = (0,)
best_offl_ts = None
# search which region should be offloaded,
# the last region does not need to be offloaded
for region in self.region_list[:-1]:
if region.param_size and not region.need_offload:
max_prefetch_profit = (0,)
best_pref_ts = None
# search when to prefetch the region offloaded
for host_region in self.region_list[region.r_id + 1 : region.r_id + 1 + self.search_window_size]:
if host_region.bwd_prefetch_region is not None:
continue
temp_ts, profit = self._try_to_offload(host_region, region)
if self._compare_profit(profit, max_prefetch_profit):
region_to_region_map[region.r_id] = host_region
max_prefetch_profit = profit
best_pref_ts = temp_ts
if profit[0] == float("inf"):
break
if self._compare_profit(max_prefetch_profit, max_offload_profit):
region_to_offload = region
max_offload_profit = max_prefetch_profit
best_offl_ts = best_pref_ts
if (region_to_offload is not None) and (best_offl_ts is not None):
region_to_offload.need_offload = True
if region_to_region_map[region_to_offload.r_id] == region_to_offload:
region_to_offload.is_syn = True
else:
region_to_region_map[region_to_offload.r_id].bwd_prefetch_region = region_to_offload
self.region_to_region_map[region_to_offload.r_id] = region_to_region_map[region_to_offload.r_id]
self._update_state(best_offl_ts)
elif self.region_to_region_map.__len__() > 0:
self._repair_strategy()
else:
raise NotImplementedError(
f"can't find the offload strategy met the memory budget {self.memory_budget / 1024 ** 2} MB, "
f"it needs {self.best_ts.peak_mem / 1024 ** 2:.3f} MB at least!"
)
region_to_region_map.clear()
def _try_to_offload(self, host_region: Region, offload_region: Region):
"""
Attempts to offload the region and prefetch it in backward pass.
"""
# record previous information
orig_prefetch = host_region.bwd_prefetch_region
orig_is_syn = offload_region.is_syn
orig_need_offload = offload_region.need_offload
if host_region == offload_region:
offload_region.is_syn = True
else:
host_region.bwd_prefetch_region = offload_region
offload_region.need_offload = True
ts, profit = self._eval_one_choice()
# restore previous information
host_region.bwd_prefetch_region = orig_prefetch
offload_region.is_syn = orig_is_syn
offload_region.need_offload = orig_need_offload
return ts, profit
def _try_convert_to_syn_upload(self, host_region: Region, offload_region: Region):
"""
Attempts to convert asynchronous prefetch into synchronous upload operations.
"""
# record previous information
orig_prefetch = host_region.bwd_prefetch_region
orig_is_syn = offload_region.is_syn
assert orig_prefetch is not None and not orig_is_syn
host_region.bwd_prefetch_region = None
offload_region.is_syn = True
ts, profit = self._eval_one_choice()
# restore previous information
host_region.bwd_prefetch_region = orig_prefetch
offload_region.is_syn = orig_is_syn
return ts, profit
def _repair_strategy(self):
"""
Repair offload strategy.
It attempts to convert asynchronous prefetch into synchronous upload operations and selects the best one.
The repair process does not end until peak memory is reduced or there is no asynchronous prefetch operation.
"""
print("repair strategy ......")
peak_mem_saving = 0
while len(self.region_to_region_map) and peak_mem_saving <= 0:
max_profit = (0,)
best_ts = None
undo_host_region = None
undo_offload_region = None
for offload_region_id, host_region in self.region_to_region_map.items():
offload_region = self.region_list[offload_region_id]
assert host_region.bwd_prefetch_region == offload_region
assert offload_region.need_offload
assert not offload_region.is_syn
ts, profit = self._try_convert_to_syn_upload(host_region, offload_region)
if self._compare_profit(profit, max_profit):
undo_host_region = host_region
undo_offload_region = offload_region
max_profit = profit
best_ts = ts
if best_ts is None:
raise NotImplementedError("repair error!")
assert not undo_offload_region.is_syn
undo_offload_region.is_syn = True
undo_host_region.bwd_prefetch_region = None
peak_mem_saving = self.best_ts.peak_mem - best_ts.peak_mem
self._update_state(best_ts)
self.region_to_region_map.pop(undo_offload_region.r_id)
return best_ts
def _eval_one_choice(self):
"""
Evaluate the profit of a strategy choice.
Returns:
AsynTrainingSimulator: the training simulator corresponding to the current strategy.
tuple: contains memory saving and cost information of the current strategy.
"""
ts = AsynTrainingSimulator(self.region_list, self.comp_power, self.link_to_bandwidth)
ts.execute()
extra_comm_cost = max(ts.iter_end_time - self.best_ts.iter_end_time, 0)
profit = self._compute_offload_profit(ts.total_mem_saving, self.best_ts.peak_mem - ts.peak_mem, extra_comm_cost)
return ts, profit
class SolverFactory:
solvers: Dict[str, Type[Solver]] = {"syn": SynGreedySolver, "asyn": AsynGreedySolver}
@staticmethod
def create(solver_name: str) -> Type[Solver]:
if solver_name not in SolverFactory.solvers:
raise TypeError(f"Unknown parameter offload policy {solver_name}")
return SolverFactory.solvers[solver_name]
@staticmethod
def get_solver_names():
return tuple(SolverFactory.solvers.keys())