mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
353 lines
15 KiB
353 lines
15 KiB
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import math
|
|
from types import MethodType
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
from transformers.models.llama.modeling_llama import (
|
|
LlamaAttention,
|
|
LlamaForCausalLM,
|
|
LlamaModel,
|
|
LlamaRMSNorm,
|
|
apply_rotary_pos_emb,
|
|
repeat_kv,
|
|
)
|
|
|
|
from colossalai.accelerator import get_accelerator
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
logger = get_dist_logger()
|
|
|
|
if get_accelerator().name == "cuda":
|
|
from flash_attn.bert_padding import pad_input, unpad_input
|
|
from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_varlen_kvpacked_func
|
|
from flash_attn.ops.rms_norm import rms_norm
|
|
|
|
def _prepare_decoder_attention_mask(
|
|
self: LlamaModel,
|
|
attention_mask: torch.BoolTensor,
|
|
input_shape: torch.Size,
|
|
inputs_embeds: torch.Tensor,
|
|
past_key_values_length: int,
|
|
) -> Optional[torch.Tensor]:
|
|
"""
|
|
Decoder attetion mask
|
|
"""
|
|
if past_key_values_length > 0 and attention_mask is not None:
|
|
attention_mask = torch.cat(
|
|
tensors=(
|
|
torch.full(
|
|
size=(input_shape[0], past_key_values_length),
|
|
fill_value=True,
|
|
dtype=attention_mask.dtype,
|
|
device=attention_mask.device,
|
|
),
|
|
attention_mask,
|
|
),
|
|
dim=-1,
|
|
) # (bsz, past_key_values_length + q_len)
|
|
if attention_mask is not None and torch.all(attention_mask):
|
|
return None # Faster
|
|
return attention_mask
|
|
|
|
def attention_forward(
|
|
self: LlamaAttention,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
"""
|
|
Re-define LLaMA-2 `LlamaAttention` forward method using flash-attention.
|
|
"""
|
|
if output_attentions:
|
|
logger.warning(
|
|
"Argument `output_attentions` is not supported for flash-attention patched `LlamaAttention`, "
|
|
"return `None` instead."
|
|
)
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
if self.config.pretraining_tp > 1:
|
|
q_slicing, kv_slicing = (
|
|
dim // self.config.pretraining_tp
|
|
for dim in (
|
|
self.num_heads * self.head_dim,
|
|
self.num_key_value_heads * self.head_dim,
|
|
)
|
|
) # `Tuple[int, int]`
|
|
q_slices, k_slices, v_slices = (
|
|
proj.weight.split(slicing, dim=0)
|
|
for proj, slicing in (
|
|
(self.q_proj, q_slicing),
|
|
(self.k_proj, kv_slicing),
|
|
(self.v_proj, kv_slicing),
|
|
)
|
|
) # Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor], Tuple[torch.Tensor]]
|
|
q, k, v = (
|
|
torch.cat(
|
|
[F.linear(hidden_states, slices[i]) for i in range(self.config.pretraining_tp)],
|
|
dim=-1,
|
|
)
|
|
for slices in (q_slices, k_slices, v_slices)
|
|
)
|
|
# `Tuple[torch.Tensor, torch.Tensor, torch.Tensor]` of shape:
|
|
# (bsz, q_len, num_heads * head_dim),
|
|
# (bsz, q_len, num_key_value_heads * head_dim),
|
|
# (bsz, q_len, num_key_value_heads * head_dim)
|
|
else:
|
|
q, k, v = (proj(hidden_states) for proj in (self.q_proj, self.k_proj, self.v_proj))
|
|
# `Tuple[torch.Tensor, torch.Tensor, torch.Tensor]` of shape:
|
|
# (bsz, q_len, num_heads * head_dim),
|
|
# (bsz, q_len, num_key_value_heads * head_dim),
|
|
# (bsz, q_len, num_key_value_heads * head_dim)
|
|
|
|
# (bsz, q_len, num_heads * head_dim) -> (bsz, num_heads, q_len, head_dim);
|
|
# (bsz, q_len, num_key_value_heads * head_dim) -> (bsz, num_key_value_heads, q_len, head_dim);
|
|
# (bsz, q_len, num_key_value_heads * head_dim) -> (bsz, num_key_value_heads, q_len, head_dim)
|
|
q, k, v = (
|
|
states.view(bsz, q_len, num_heads, self.head_dim).transpose(1, 2)
|
|
for states, num_heads in (
|
|
(q, self.num_heads),
|
|
(k, self.num_key_value_heads),
|
|
(v, self.num_key_value_heads),
|
|
)
|
|
)
|
|
kv_len = k.shape[-2] # initially, `kv_len` == `q_len`
|
|
past_kv_len = 0
|
|
if past_key_value is not None:
|
|
# if `past_key_value` is not None, `kv_len` > `q_len`.
|
|
past_kv_len = past_key_value[0].shape[-2]
|
|
kv_len += past_kv_len
|
|
|
|
# two `torch.Tensor` objs of shape (1, 1, kv_len, head_dim)
|
|
cos, sin = self.rotary_emb(v, seq_len=kv_len)
|
|
# (bsz, num_heads, q_len, head_dim), (bsz, num_key_value_heads, q_len, head_dim)
|
|
q, k = apply_rotary_pos_emb(q=q, k=k, cos=cos, sin=sin, position_ids=position_ids)
|
|
if past_key_value is not None:
|
|
# reuse k, v, self_attention
|
|
k = torch.cat([past_key_value[0], k], dim=2)
|
|
v = torch.cat([past_key_value[1], v], dim=2)
|
|
|
|
past_key_value = (k, v) if use_cache else None
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
k = repeat_kv(hidden_states=k, n_rep=self.num_key_value_groups)
|
|
# (bsz, num_key_value_heads, q_len, head_dim) -> (bsz, num_heads, q_len, head_dim)
|
|
v = repeat_kv(hidden_states=v, n_rep=self.num_key_value_groups)
|
|
# (bsz, num_key_value_heads, q_len, head_dim) -> (bsz, num_heads, q_len, head_dim)
|
|
|
|
key_padding_mask = attention_mask
|
|
# (bsz, num_heads, q_len, head_dim) -> (bsz, q_len, num_heads, head_dim)
|
|
q, k, v = (states.transpose(1, 2) for states in (q, k, v))
|
|
|
|
if past_kv_len > 0:
|
|
q = torch.cat(
|
|
tensors=(
|
|
torch.full(
|
|
size=(bsz, past_kv_len, self.num_heads, self.head_dim),
|
|
fill_value=0.0,
|
|
dtype=q.dtype,
|
|
device=q.device,
|
|
),
|
|
q,
|
|
),
|
|
dim=1,
|
|
) # (bsz, past_kv_len + q_len, num_heads, head_dim)
|
|
|
|
if key_padding_mask is None:
|
|
# (bsz, past_kv_len + q_len, num_heads, head_dim)
|
|
output = flash_attn_func(q=q, k=k, v=v, dropout_p=0.0, softmax_scale=None, causal=True) # (bsz, )
|
|
output = rearrange(
|
|
output, pattern="... h d -> ... (h d)"
|
|
) # (bsz, past_kv_len + q_len, num_heads * head_dim)
|
|
else:
|
|
q, indices, cu_q_lens, max_q_len = unpad_input(hidden_states=q, attention_mask=key_padding_mask)
|
|
kv, _, cu_kv_lens, max_kv_len = unpad_input(
|
|
hidden_states=torch.stack(tensors=(k, v), dim=2),
|
|
attention_mask=key_padding_mask,
|
|
)
|
|
output_unpad = flash_attn_varlen_kvpacked_func(
|
|
q=q,
|
|
kv=kv,
|
|
cu_seqlens_q=cu_q_lens,
|
|
cu_seqlens_k=cu_kv_lens,
|
|
max_seqlen_q=max_q_len,
|
|
max_seqlen_k=max_kv_len,
|
|
dropout_p=0.0,
|
|
softmax_scale=None,
|
|
causal=True,
|
|
)
|
|
output = pad_input(
|
|
hidden_states=rearrange(output_unpad, pattern="nnz h d -> nnz (h d)"),
|
|
indices=indices,
|
|
batch=bsz,
|
|
seqlen=past_kv_len + q_len,
|
|
) # (bsz, past_kv_len + q_len, num_heads * head_dim)
|
|
|
|
if past_kv_len > 0:
|
|
# Strip off the zero query outputs.
|
|
output = output[:, past_kv_len:, ...] # (bsz, q_len, num_heads * head_dim)
|
|
output = self.o_proj(output) # (bsz, q_len, hidden_size)
|
|
return output, None, past_key_value
|
|
|
|
def rms_norm_forward(self: LlamaRMSNorm, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Formard function for RMS Norm
|
|
"""
|
|
return rms_norm(x=hidden_states, weight=self.weight, epsilon=self.variance_epsilon)
|
|
|
|
def replace_with_flash_attention(model: LlamaForCausalLM) -> None:
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, LlamaAttention):
|
|
module.forward = MethodType(attention_forward, module)
|
|
if isinstance(module, LlamaModel):
|
|
module._prepare_decoder_attention_mask = MethodType(_prepare_decoder_attention_mask, module)
|
|
if isinstance(module, LlamaRMSNorm):
|
|
module.forward = MethodType(rms_norm_forward, module)
|
|
|
|
elif get_accelerator().name == "npu":
|
|
import torch_npu
|
|
|
|
class NPULlamaAttention(LlamaAttention):
|
|
use_flash: bool = True
|
|
|
|
def __init__(self, config: LlamaConfig):
|
|
super().__init__(config)
|
|
self.setup()
|
|
|
|
def setup(self):
|
|
self._softmax_scale = 1 / math.sqrt(self.head_dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
if self.config.pretraining_tp > 1:
|
|
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
|
query_slices = self.q_proj.weight.split(
|
|
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
|
)
|
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
|
|
|
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
query_states = torch.cat(query_states, dim=-1)
|
|
|
|
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
key_states = torch.cat(key_states, dim=-1)
|
|
|
|
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
value_states = torch.cat(value_states, dim=-1)
|
|
|
|
else:
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value[0].shape[-2]
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
if past_key_value is not None:
|
|
# reuse k, v, self_attention
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
|
|
past_key_value = (key_states, value_states) if use_cache else None
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
if not self.use_flash:
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
|
f" {attn_weights.size()}"
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
# upcast attention to fp32
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
else:
|
|
attn_output, *_ = torch_npu.npu_fusion_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
self.num_heads,
|
|
"BNSD",
|
|
atten_mask=attention_mask.bool(),
|
|
scale=self._softmax_scale,
|
|
padding_mask=None,
|
|
pre_tockens=65535,
|
|
next_tockens=0,
|
|
keep_prob=1.0,
|
|
inner_precise=0,
|
|
)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
if self.config.pretraining_tp > 1:
|
|
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
|
attn_output = sum(
|
|
[F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]
|
|
)
|
|
else:
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
class NPURMSNorm(LlamaRMSNorm):
|
|
def forward(self, hidden_states):
|
|
return torch_npu.npu_rms_norm(hidden_states, self.weight, epsilon=self.variance_epsilon)[0]
|
|
|
|
def replace_with_flash_attention(model: LlamaForCausalLM) -> None:
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, LlamaAttention):
|
|
module.__class__ = NPULlamaAttention
|
|
module.setup()
|
|
if isinstance(module, LlamaRMSNorm):
|
|
module.__class__ = NPURMSNorm
|