You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_pipeline/test_schedule/test_oneF_oneB.py

174 lines
5.3 KiB

import copy
from functools import partial
from types import MethodType
import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
import colossalai
from colossalai.cluster import ProcessGroupMesh
from colossalai.interface import OptimizerWrapper
from colossalai.pipeline.schedule.one_f_one_b import OneForwardOneBackwardSchedule
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
DIM = 8
NUM_LAYER = 8
class MlpModel(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.ModuleList([nn.Linear(DIM, DIM) for _ in range(NUM_LAYER)])
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def pp_linear_fwd(
forward,
data: torch.Tensor = None,
input_obj: torch.Tensor = None,
stage_mgr: PipelineStageManager = None,
):
if stage_mgr.is_first_stage():
return {"input_obj": forward(data)}
elif stage_mgr.is_last_stage():
return forward(input_obj)
else:
return {"input_obj": forward(input_obj)}
def examine_pp(num_microbatch: int, batch_size: int):
"""
This test is to examine the correctness of 1F1B, compared with torch.
Be aware it contains some hardcodes.
"""
world_size = dist.get_world_size()
dist.get_rank()
seed_all(1453)
# create models
torch_model = MlpModel().cuda()
pp_model = copy.deepcopy(torch_model).cuda()
pg_mesh = ProcessGroupMesh(world_size)
stage_manager = PipelineStageManager(pg_mesh, pipeline_axis=0)
schedule = OneForwardOneBackwardSchedule(stage_manager, num_microbatches=num_microbatch)
rank = dist.get_rank()
sharded_model = torch.nn.ModuleList()
num_local_layer = NUM_LAYER // world_size
for idx, sub_model in enumerate(pp_model.layers):
if idx // num_local_layer == rank:
sharded_model.append(sub_model.cuda())
assert len(sharded_model) == num_local_layer
def custom_fwd(self, x):
for layer in self._modules.values():
x = layer(x)
return x
sharded_model._forward = MethodType(custom_fwd, sharded_model)
sharded_model.forward = MethodType(
partial(
pp_linear_fwd,
stage_mgr=stage_manager,
),
sharded_model._forward,
)
# create optimizer
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
pp_optimizer = OptimizerWrapper(torch.optim.SGD(sharded_model.parameters(), lr=1))
# create
seed_all(1453)
input_list = [torch.rand(batch_size, DIM).cuda()]
dist.all_reduce(input_list[0])
criterion = lambda x, *arg, **kwargs: (x * x).mean()
# forward and backward
torch_output = torch_model(input_list[0])
torch_loss = criterion(torch_output)
torch_loss.backward()
pp_ret = schedule.forward_backward_step(
sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True, return_outputs=True
)
# check loss
if stage_manager.is_last_stage():
assert torch.allclose(torch_loss, pp_ret["loss"])
# check gradients
for i in range(len(sharded_model)):
idx = rank * num_local_layer + i
assert torch.allclose(torch_model.layers[idx].weight.grad, sharded_model[i].weight.grad)
assert torch.allclose(torch_model.layers[idx].bias.grad, sharded_model[i].bias.grad)
# step
torch_optimizer.step()
pp_optimizer.step()
pp_optimizer.zero_grad()
# check updated param
for i in range(len(sharded_model)):
idx = rank * num_local_layer + i
assert torch.allclose(torch_model.layers[idx].weight, sharded_model[i].weight)
assert torch.allclose(torch_model.layers[idx].bias, sharded_model[i].bias)
# forward only
with torch.no_grad():
torch_output = torch_model(input_list[0])
torch_loss = criterion(torch_output)
pp_ret = schedule.forward_backward_step(
sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True, return_outputs=True
)
if stage_manager.is_last_stage():
assert torch.allclose(torch_loss, pp_ret["loss"])
for layer in sharded_model:
if layer.weight.grad is None:
assert layer.weight.grad is None and layer.bias.grad is None
else:
assert torch.allclose(layer.weight.grad, torch.zeros_like(layer.weight.grad))
assert torch.allclose(layer.bias.grad, torch.zeros_like(layer.bias.grad))
def run_dist(
rank: int,
world_size: int,
port: int,
num_microbatch: int,
batch_size: int,
):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost")
examine_pp(num_microbatch, batch_size)
@pytest.mark.dist
@pytest.mark.parametrize("num_microbatch", [4, 12])
@pytest.mark.parametrize("batch_size", [12])
@pytest.mark.parametrize("world_size", [2, 4])
@rerun_if_address_is_in_use()
def test_pp(num_microbatch: int, batch_size: int, world_size: int):
assert NUM_LAYER % world_size == 0
spawn(
run_dist,
world_size,
num_microbatch=num_microbatch,
batch_size=batch_size,
)
if __name__ == "__main__":
test_pp(num_microbatch=4, batch_size=4, world_size=4)