Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

33 lines
1.0 KiB

from model import GPT3_pipeline_hybrid
from colossalai.nn.optimizer import HybridAdam
from colossalai.zero.shard_utils import TensorShardStrategy
BATCH_SIZE = 192
NUM_EPOCHS = 60
SEQ_LEN = 2048
NUM_MICRO_BATCHES = 192
HIDDEN_SIZE = 12288
TENSOR_SHAPE = (BATCH_SIZE // NUM_MICRO_BATCHES, SEQ_LEN, HIDDEN_SIZE)
# if you do no want zero, just comment out this dictionary
zero = dict(
model_config=dict(tensor_placement_policy="cuda", shard_strategy=TensorShardStrategy()),
optimizer_config=dict(initial_scale=2**16),
)
optimizer = dict(
type=HybridAdam,
lr=0.00015,
weight_decay=1e-2,
)
model = dict(type=GPT3_pipeline_hybrid, checkpoint=True, num_chunks=1)
# pipeline parallel: modify integer value for the number of pipeline stages
# tensor parallel: modify size to set the tensor parallel size, usually the number of GPUs per node
# for the current model implementation, mode can only be 1D or None
parallel = dict(
pipeline=1,
tensor=dict(size=2, mode="1d"), # for the current model implementation, mode can only be 1D or None
)