You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/gpt/experiments/auto_offload/model_zoo.py

64 lines
2.4 KiB

import torch
import torch.nn as nn
from transformers import GPT2Config, GPT2LMHeadModel
class GPTLMModel(nn.Module):
def __init__(self, hidden_size=768, num_layers=12, num_attention_heads=12, max_seq_len=1024, vocab_size=50257):
super().__init__()
self.model = GPT2LMHeadModel(
GPT2Config(
n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size,
)
)
def forward(self, input_ids, attention_mask):
# Only return lm_logits
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=True)[0]
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
def get_gpt2_components(model_type: str, batch_size: int):
vocab_size = 1024
seq_len = 8
def gpt2_model_builder():
if model_type == "gpt2_medium":
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16)
elif model_type == "gpt2_xl":
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32)
elif model_type == "gpt2_10b":
return GPTLMModel(hidden_size=4096, num_layers=50, num_attention_heads=16)
elif model_type == "gpt2_14b":
return GPTLMModel(hidden_size=4096, num_layers=70, num_attention_heads=16)
elif model_type == "gpt2_20b":
return GPTLMModel(hidden_size=8192, num_layers=25, num_attention_heads=16)
elif model_type == "gpt2_24b":
return GPTLMModel(hidden_size=8192, num_layers=30, num_attention_heads=16)
else:
raise TypeError(f"model_builder {model_type}")
def gpt2_data_gen(device="cuda"):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=device)
attention_mask = torch.ones_like(input_ids, device=device)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
return kwargs
return gpt2_model_builder, gpt2_data_gen