mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
28 lines
870 B
28 lines
870 B
from .mixed_precision_base import MixedPrecision |
|
|
|
|
|
class FP16NaiveMixedPrecision(MixedPrecision): |
|
""" |
|
Precision for mixed precision training in FP16 using naive AMP. |
|
|
|
Args: |
|
log_num_zeros_in_grad(bool): return number of zeros in the gradients. |
|
initial_scale(int): initial scale of gradient scaler. |
|
growth_factor(int): the growth rate of loss scale. |
|
backoff_factor(float): the decrease rate of loss scale. |
|
hysteresis(int): delay shift in dynamic loss scaling. |
|
max_scale(int): maximum loss scale allowed. |
|
verbose(bool): if set to `True`, will print debug info. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
log_num_zeros_in_grad: bool, |
|
initial_scale: int, |
|
growth_factor: int, |
|
backoff_factor: float, |
|
hysteresis: int, |
|
max_scale: int, |
|
verbose: bool = None, |
|
) -> None: |
|
pass
|
|
|