You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/_analyzer/_subclasses/flop_tensor.py

555 lines
18 KiB

# adopted from https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/jit_handles.py
# ideas from https://pastebin.com/AkvAyJBw
# and https://dev-discuss.pytorch.org/t/the-ideal-pytorch-flop-counter-with-torch-dispatch/505
import operator
from collections import defaultdict
from contextlib import contextmanager
from enum import Enum, auto
from functools import partial, reduce
from numbers import Number
from typing import Any, Callable, List, Union
import torch
from packaging import version
from torch.utils._pytree import tree_map
from .meta_tensor import MetaTensor
aten = torch.ops.aten
class Phase(Enum):
FWD = auto()
BWD = auto()
def normalize_tuple(x):
if not isinstance(x, tuple):
return (x,)
return x
def _format_flops(flop):
K = 1e3
M = 1e6
B = 1e9
T = 1e12
if flop < K:
return f"{flop:.2f}"
elif flop < M:
return f"{flop / K:.2f}K"
elif flop < B:
return f"{flop / M:.2f}M"
elif flop < T:
return f"{flop / B:.2f}B"
else:
return f"{flop / T:.2f}T"
def flop_count(module: Union[torch.nn.Module, Callable] = None, *args, verbose: bool = False, **kwargs) -> Number:
"""
Count the number of floating point operations in a model.
Ideas from https://pastebin.com/AkvAyJBw.
Args:
module (torch.nn.Module): A PyTorch model.
*args: Input arguments to the model.
verbose (bool): If True, print the number of flops for each module.
**kwargs: Input keyword arguments to the model.
Returns:
Number: The total number of floating point operations (FWD + BWD).
"""
maybe_inplace = (
getattr(module, "inplace", False)
or kwargs.get("inplace", False)
or getattr(module, "__name__", None) in ("add_", "mul_", "div_", "sub_")
)
class DummyModule(torch.nn.Module):
def __init__(self, func):
super().__init__()
self.func = func
self.__name__ = func.__name__
def forward(self, *args, **kwargs):
return self.func(*args, **kwargs)
total_flop_count = {Phase.FWD: 0, Phase.BWD: 0}
flop_counts = defaultdict(lambda: defaultdict(int))
parents = ["Global"]
module = module if isinstance(module, torch.nn.Module) else DummyModule(module)
class FlopTensor(MetaTensor):
_tensor: torch.Tensor
def __repr__(self):
name = "FlopParameter" if getattr(self, "_is_param", False) else "FlopTensor"
if self.grad_fn:
return f"{name}(..., size={tuple(self.shape)}, device='{self.device}', dtype={self.dtype}, grad_fn={self.grad_fn})"
return f"{name}(..., size={tuple(self.shape)}, device='{self.device}', dtype={self.dtype})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
# no_dispatch is only needed if you use enable_python_mode.
# It prevents infinite recursion.
rs = super().__torch_dispatch__(func, types, args, kwargs)
outs = normalize_tuple(rs)
if func in flop_mapping:
nonlocal flop_counts, total_flop_count
flop_count = flop_mapping[func](args, outs)
for par in parents:
flop_counts[par][func.__name__] += flop_count
total_flop_count[cur_phase] += flop_count
def wrap(x):
if isinstance(x, MetaTensor):
x = FlopTensor(x)
return x
rs = tree_map(wrap, rs)
return rs
def is_autogradable(x):
return isinstance(x, torch.Tensor) and x.is_floating_point()
def create_backwards_push(name):
class PushState(torch.autograd.Function):
@staticmethod
def forward(ctx, *args):
args = tree_map(lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args)
if len(args) == 1:
return args[0]
return args
@staticmethod
def backward(ctx, *grad_outs):
nonlocal parents
parents.append(name)
return grad_outs
return PushState.apply
def create_backwards_pop(name):
class PopState(torch.autograd.Function):
@staticmethod
def forward(ctx, *args):
args = tree_map(lambda x: x.clone() if isinstance(x, torch.Tensor) else x, args)
if len(args) == 1:
return args[0]
return args
@staticmethod
def backward(ctx, *grad_outs):
nonlocal parents
assert parents[-1] == name
parents.pop()
return grad_outs
return PopState.apply
def enter_module(name):
def f(module, inputs):
nonlocal parents
parents.append(name)
inputs = normalize_tuple(inputs)
out = create_backwards_pop(name)(*inputs)
return out
return f
def exit_module(name):
def f(module, inputs, outputs):
nonlocal parents
assert parents[-1] == name
parents.pop()
outputs = normalize_tuple(outputs)
return create_backwards_push(name)(*outputs)
return f
@contextmanager
def instrument_module(mod):
registered = []
for name, module in dict(mod.named_children()).items():
registered.append(module.register_forward_pre_hook(enter_module(name)))
registered.append(module.register_forward_hook(exit_module(name)))
yield
for handle in registered:
handle.remove()
def display_flops():
for mod in flop_counts.keys():
print(f"Module: ", mod)
for k, v in flop_counts[mod].items():
print("\t", k, _format_flops(v))
print()
def detach_variables(r):
if isinstance(r, torch.Tensor):
requires_grad = r.requires_grad
r = r.detach()
r.requires_grad = requires_grad
return r
def wrap(r):
if isinstance(r, torch.Tensor):
data_ptr_fn = getattr(r, "_tensor", r).data_ptr
r = FlopTensor(detach_variables(r))
if maybe_inplace:
r = r + 0
r._tensor.data_ptr = data_ptr_fn
return r
with instrument_module(module):
cur_phase = Phase.FWD
rst = module(*tree_map(wrap, args), **tree_map(wrap, kwargs))
rst = tuple(r for r in normalize_tuple(rst) if is_autogradable(r) and r.requires_grad)
cur_phase = Phase.BWD
if rst:
grad = [torch.zeros_like(t) for t in rst]
torch.autograd.backward(
rst,
grad,
)
if verbose:
display_flops()
return total_flop_count[Phase.FWD], total_flop_count[Phase.BWD]
def matmul_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for matmul.
"""
# Inputs should be a list of length 2.
# Inputs contains the shapes of two matrices.
input_shapes = [v.shape for v in inputs]
assert len(input_shapes) == 2, input_shapes
# There are three cases: 1) gemm, 2) gemv, 3) dot
if all(len(shape) == 2 for shape in input_shapes):
# gemm
assert input_shapes[0][-1] == input_shapes[1][-2], input_shapes
elif all(len(shape) == 1 for shape in input_shapes):
# dot
assert input_shapes[0][0] == input_shapes[1][0], input_shapes
# expand shape
input_shapes[0] = torch.Size([1, input_shapes[0][0]])
input_shapes[1] = torch.Size([input_shapes[1][0], 1])
else:
# gemv
if len(input_shapes[0]) == 1:
assert input_shapes[0][0] == input_shapes[1][-2], input_shapes
input_shapes.reverse()
else:
assert input_shapes[1][0] == input_shapes[0][-1], input_shapes
# expand the shape of the vector to [batch size, 1]
input_shapes[-1] = torch.Size([input_shapes[-1][-1], 1])
flops = reduce(operator.mul, input_shapes[0]) * input_shapes[-1][-1]
return flops
def addmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for fully connected layers.
"""
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [v.shape for v in inputs[1:3]]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [input feature dimension, output feature dimension]
assert len(input_shapes[0]) == 2, input_shapes[0]
assert len(input_shapes[1]) == 2, input_shapes[1]
batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][1]
flops = batch_size * input_dim * output_dim
return flops
def linear_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for the aten::linear operator.
"""
# Inputs is a list of length 3; unlike aten::addmm, it is the first
# two elements that are relevant.
input_shapes = [v.shape for v in inputs[0:2]]
# input_shapes[0]: [dim0, dim1, ..., input_feature_dim]
# input_shapes[1]: [output_feature_dim, input_feature_dim]
assert input_shapes[0][-1] == input_shapes[1][-1]
flops = reduce(operator.mul, input_shapes[0]) * input_shapes[1][0]
return flops
def bmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for the bmm operation.
"""
# Inputs should be a list of length 2.
# Inputs contains the shapes of two tensor.
assert len(inputs) == 2, len(inputs)
input_shapes = [v.shape for v in inputs]
n, c, t = input_shapes[0]
d = input_shapes[-1][-1]
flops = n * c * t * d
return flops
def conv_flop_count(
x_shape: List[int],
w_shape: List[int],
out_shape: List[int],
transposed: bool = False,
) -> Number:
"""
Count flops for convolution. Note only multiplication is
counted. Computation for addition and bias is ignored.
Flops for a transposed convolution are calculated as
flops = (x_shape[2:] * prod(w_shape) * batch_size).
Args:
x_shape (list(int)): The input shape before convolution.
w_shape (list(int)): The filter shape.
out_shape (list(int)): The output shape after convolution.
transposed (bool): is the convolution transposed
Returns:
int: the number of flops
"""
batch_size = x_shape[0]
conv_shape = (x_shape if transposed else out_shape)[2:]
flops = batch_size * reduce(operator.mul, w_shape) * reduce(operator.mul, conv_shape)
return flops
def conv_flop_jit(inputs: List[Any], outputs: List[Any]):
"""
Count flops for convolution.
"""
x, w = inputs[:2]
x_shape, w_shape, out_shape = (x.shape, w.shape, outputs[0].shape)
transposed = inputs[6]
return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed)
def transpose_shape(shape):
return [shape[1], shape[0]] + list(shape[2:])
def conv_backward_flop_jit(inputs: List[Any], outputs: List[Any]):
grad_out_shape, x_shape, w_shape = [i.shape for i in inputs[:3]]
output_mask = inputs[-1]
fwd_transposed = inputs[7]
flop_count = 0
if output_mask[0]:
grad_input_shape = outputs[0].shape
flop_count += conv_flop_count(grad_out_shape, w_shape, grad_input_shape, not fwd_transposed)
if output_mask[1]:
grad_weight_shape = outputs[1].shape
flop_count += conv_flop_count(transpose_shape(x_shape), grad_out_shape, grad_weight_shape, fwd_transposed)
return flop_count
def norm_flop_counter(affine_arg_index: int, input_arg_index: int) -> Callable:
"""
Args:
affine_arg_index: index of the affine argument in inputs
"""
def norm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for norm layers.
"""
# Inputs[0] contains the shape of the input.
input_shape = inputs[input_arg_index].shape
has_affine = (
inputs[affine_arg_index].shape is not None
if hasattr(inputs[affine_arg_index], "shape")
else inputs[affine_arg_index]
)
assert 2 <= len(input_shape) <= 5, input_shape
# 5 is just a rough estimate
flop = reduce(operator.mul, input_shape) * (5 if has_affine else 4)
return flop
return norm_flop_jit
def batchnorm_flop_jit(inputs: List[Any], outputs: List[Any], training: bool = None) -> Number:
if training is None:
training = inputs[-3]
assert isinstance(training, bool), "Signature of aten::batch_norm has changed!"
if training:
return norm_flop_counter(1, 0)(inputs, outputs) # pyre-ignore
has_affine = inputs[1].shape is not None
input_shape = reduce(operator.mul, inputs[0].shape)
return input_shape * (2 if has_affine else 1)
def ewise_flop_counter(input_scale: float = 1, output_scale: float = 0) -> Callable:
"""
Count flops by
input_tensor.numel() * input_scale + output_tensor.numel() * output_scale
Args:
input_scale: scale of the input tensor (first argument)
output_scale: scale of the output tensor (first element in outputs)
"""
def ewise_flop(inputs: List[Any], outputs: List[Any]) -> Number:
ret = 0
if input_scale != 0:
shape = inputs[0].shape
ret += input_scale * reduce(operator.mul, shape) if shape else 0
if output_scale != 0:
shape = outputs[0].shape
ret += output_scale * reduce(operator.mul, shape) if shape else 0
return ret
return ewise_flop
def zero_flop_jit(*args):
"""
Count flops for zero flop layers.
"""
return 0
if version.parse(torch.__version__) >= version.parse("1.12.0"):
flop_mapping = {
# gemm
aten.mm.default: matmul_flop_jit,
aten.matmul.default: matmul_flop_jit,
aten.addmm.default: addmm_flop_jit,
aten.bmm.default: bmm_flop_jit,
# convolution
aten.convolution.default: conv_flop_jit,
aten._convolution.default: conv_flop_jit,
aten.convolution_backward.default: conv_backward_flop_jit,
# normalization
aten.native_batch_norm.default: batchnorm_flop_jit,
aten.native_batch_norm_backward.default: batchnorm_flop_jit,
aten.cudnn_batch_norm.default: batchnorm_flop_jit,
aten.cudnn_batch_norm_backward.default: partial(batchnorm_flop_jit, training=True),
aten.native_layer_norm.default: norm_flop_counter(2, 0),
aten.native_layer_norm_backward.default: norm_flop_counter(2, 0),
# pooling
aten.avg_pool1d.default: ewise_flop_counter(1, 0),
aten.avg_pool2d.default: ewise_flop_counter(1, 0),
aten.avg_pool2d_backward.default: ewise_flop_counter(0, 1),
aten.avg_pool3d.default: ewise_flop_counter(1, 0),
aten.avg_pool3d_backward.default: ewise_flop_counter(0, 1),
aten.max_pool1d.default: ewise_flop_counter(1, 0),
aten.max_pool2d.default: ewise_flop_counter(1, 0),
aten.max_pool3d.default: ewise_flop_counter(1, 0),
aten.max_pool1d_with_indices.default: ewise_flop_counter(1, 0),
aten.max_pool2d_with_indices.default: ewise_flop_counter(1, 0),
aten.max_pool2d_with_indices_backward.default: ewise_flop_counter(0, 1),
aten.max_pool3d_with_indices.default: ewise_flop_counter(1, 0),
aten.max_pool3d_with_indices_backward.default: ewise_flop_counter(0, 1),
aten._adaptive_avg_pool2d.default: ewise_flop_counter(1, 0),
aten._adaptive_avg_pool2d_backward.default: ewise_flop_counter(0, 1),
aten._adaptive_avg_pool3d.default: ewise_flop_counter(1, 0),
aten._adaptive_avg_pool3d_backward.default: ewise_flop_counter(0, 1),
aten.embedding_dense_backward.default: ewise_flop_counter(0, 1),
aten.embedding.default: ewise_flop_counter(1, 0),
}
ewise_flop_aten = [
# basic op
aten.add.Tensor,
aten.add_.Tensor,
aten.div.Tensor,
aten.div_.Tensor,
aten.div.Scalar,
aten.div_.Scalar,
aten.mul.Tensor,
aten.mul.Scalar,
aten.mul_.Tensor,
aten.neg.default,
aten.pow.Tensor_Scalar,
aten.rsub.Scalar,
aten.sum.default,
aten.sum.dim_IntList,
aten.mean.dim,
# activation op
aten.hardswish.default,
aten.hardswish_.default,
aten.hardswish_backward.default,
aten.hardtanh.default,
aten.hardtanh_.default,
aten.hardtanh_backward.default,
aten.hardsigmoid_backward.default,
aten.hardsigmoid.default,
aten.gelu.default,
aten.gelu_backward.default,
aten.silu.default,
aten.silu_.default,
aten.silu_backward.default,
aten.sigmoid.default,
aten.sigmoid_backward.default,
aten._softmax.default,
aten._softmax_backward_data.default,
aten.relu_.default,
aten.relu.default,
aten.tanh.default,
aten.tanh_backward.default,
aten.threshold_backward.default,
# dropout
aten.native_dropout.default,
aten.native_dropout_backward.default,
# distribution
aten.bernoulli_.float,
# where
aten.where.self,
]
for op in ewise_flop_aten:
flop_mapping[op] = ewise_flop_counter(1, 0)
# fix-me: this will be removed in future
zero_flop_aten = [
aten.as_strided.default,
aten.as_strided_.default,
aten.cat.default,
aten.clone.default,
aten.copy_.default,
aten.detach.default,
aten.expand.default,
aten.empty_like.default,
aten.new_empty.default,
aten.new_empty_strided.default,
aten.ones_like.default,
aten._reshape_alias.default,
aten.select.int,
aten.select_backward.default,
aten.squeeze.dim,
aten.slice.Tensor,
aten.slice_backward.default,
aten.split.Tensor,
aten.permute.default,
aten.t.default,
aten.transpose.int,
aten._to_copy.default,
aten.unsqueeze.default,
aten.unbind.int,
aten._unsafe_view.default,
aten.view.default,
aten.zero_.default,
aten.zeros_like.default,
]
for op in zero_flop_aten:
flop_mapping[op] = zero_flop_jit
else:
flop_mapping = {}
elementwise_flop_aten = {}
zero_flop_aten = {}