You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_tensor/test_tp_with_zero.py

144 lines
5.5 KiB

import pytest
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.amp import convert_to_apex_amp
from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils.cuda import get_current_device
from colossalai.zero import ColoInitContext, GeminiAdamOptimizer, GeminiDDP, ZeroDDP
from colossalai.zero.gemini import search_chunk_configuration
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import set_seed, tensor_shard_equal
from tests.test_tensor.model.test_gpt2 import init_megatron_spec
def check_param(model: ZeroDDP, torch_model: torch.nn.Module, pg: ProcessGroup):
zero_dict = model.state_dict(only_rank_0=False)
torch_dict = torch_model.state_dict()
for key, value in torch_dict.items():
# key is 'module.model.PARAMETER', so we truncate it
key = key[7:]
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
assert tensor_shard_equal(value, temp_zero_value, pg.tp_local_rank(), pg.tp_world_size()), \
"parameter '{}' has problem.".format(key)
def run_fwd_bwd(model, criterion, optimizer, input_ids):
optimizer.zero_grad()
logits = model(input_ids)
logits = logits.float()
loss = criterion(logits, input_ids)
optimizer.backward(loss)
return logits
def init_1d_row_spec(model, pg: ProcessGroup):
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
for n, p in model.named_parameters():
p.set_process_group(pg)
if 'weight' in n and 'ln' not in n:
p.set_tensor_spec(*spec)
def init_1d_col_spec(model, pg: ProcessGroup):
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
for n, p in model.named_parameters():
p.set_process_group(pg)
if 'ln' not in n and ('weight' in n or 'bias' in n):
p.set_tensor_spec(*spec)
@parameterize('placement_policy', ['cuda', 'cpu'])
def run_gpt(placement_policy, tp_init_spec_func=None):
set_seed(42)
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext(device=get_current_device()):
model = model_builder()
model = model.cuda()
torch_model = model_builder().cuda()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p.data)
world_size = torch.distributed.get_world_size()
# world size, dp = 2, tp =2, construct a hybrid parallelism.
if world_size == 4:
pg = ProcessGroup(tp_degree=2)
else:
pg = ProcessGroup(tp_degree=world_size)
if tp_init_spec_func:
tp_init_spec_func(model, pg)
dp_world_size = pg.dp_world_size()
config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
config_dict[dp_world_size]['chunk_size'] = 5000
config_dict[dp_world_size]['keep_gathered'] = False
if placement_policy != 'cuda':
init_device = torch.device('cpu')
else:
init_device = None
model = GeminiDDP(model, init_device, placement_policy, True, False)
# The same as the following 3 lines
# chunk_manager = ChunkManager(config_dict, init_device=init_device)
# gemini_manager = GeminiManager(placement_policy, chunk_manager)
# model = ZeroDDP(model, gemini_manager, pin_memory=True)
zero_optim = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=1)
# The same as the following 2 lines
# optimizer = HybridAdam(model.parameters(), lr=1e-3)
# zero_optim = ZeroOptimizer(optimizer, model, initial_scale=1)
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
check_param(model, torch_model, pg)
model.eval()
torch_model.eval()
set_seed(pg.dp_local_rank())
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 2:
break
input_ids_colo = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg))
zero_logits = run_fwd_bwd(model, criterion, zero_optim, input_ids_colo)
torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids)
assert torch.allclose(zero_logits, torch_logits, rtol=1e-3, atol=1e-2)
zero_optim.step()
torch_optim.step()
check_param(model, torch_model, pg)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
if world_size == 4:
run_gpt(tp_init_spec_func=init_megatron_spec)
else:
run_gpt(tp_init_spec_func=init_1d_col_spec)
run_gpt(tp_init_spec_func=init_1d_row_spec)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_gpt(world_size):
spawn(run_dist, world_size)
if __name__ == '__main__':
test_gpt(4)