You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_pipeline/rpc_test_utils.py

145 lines
4.9 KiB

import argparse
import os
import warnings
import torch
import torch.distributed as dist
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
from colossalai import launch
from colossalai.logging import disable_existing_loggers
from colossalai.pipeline.pipeline_process_group import ppg
from torch import nn
from torch._C._distributed_rpc import _is_current_rpc_agent_set
from torch.optim import SGD, Adam, Optimizer, RMSprop
rpc_is_initialized = _is_current_rpc_agent_set
def color_debug(text, prefix=' ', color='blue'):
color = color.upper()
print(getattr(Back, color), prefix, Style.RESET_ALL, text)
class MLP(nn.Module):
def __init__(self, dim: int, layers: int):
super().__init__()
self.layers = torch.nn.ModuleList()
for _ in range(layers):
self.layers.append(nn.Linear(dim, dim, bias=False))
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x.sum()
class DAG_MLP(nn.Module):
def __init__(self, dim: int, layers: int):
super().__init__()
self.layers = torch.nn.ModuleList()
self.dag_layer = nn.Linear(dim, dim, bias=False)
for _ in range(layers):
self.layers.append(nn.Linear(dim, dim, bias=False))
def forward(self, x, y):
for layer in self.layers:
x = layer(x)
y = self.dag_layer(y)
return x.sum(), y.sum()
class RpcTestModel(nn.Module):
def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None:
super().__init__()
self.rank = stage_id
self.is_last_rank = stage_id == actual_stage_num - 1
self.linear_name = f'linear_{stage_id}'
if stage_id == 0:
linear = nn.Linear(feat_num, h)
elif stage_id == actual_stage_num - 1:
linear = nn.Linear(h, 1)
else:
linear = nn.Linear(h, h)
setattr(self, self.linear_name, linear)
def forward(self, x) -> torch.Tensor:
linear: nn.Module = getattr(self, self.linear_name)
out: torch.Tensor = linear(x)
if self.is_last_rank:
out = out.sum()
return out
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--dp_degree', type=int, default=1)
parser.add_argument('--tp_degree', type=int, default=1)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD')
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
parser.add_argument('--num_worker_threads', type=str, default=128)
return parser.parse_args()
def pg_parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=4)
parser.add_argument('--dp_degree', type=int, default=2)
parser.add_argument('--tp_degree', type=int, default=1)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--num_worker_threads', type=str, default=128)
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
return parser.parse_args()
def run_worker(rank, args, master_func):
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
device = args.device
world_size = args.world_size
dp_degree = args.dp_degree
tp_degree = args.tp_degree
num_worker_threads = args.num_worker_threads
host = args.master_addr
port = args.master_port
backend = 'nccl' if device == 'cuda' else 'gloo'
disable_existing_loggers()
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
ppg.set_global_info(rank=rank,
world_size=world_size,
dp_degree=dp_degree,
tp_degree=tp_degree,
num_worker_threads=num_worker_threads,
device=device)
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:
master_func(args)
# barrier here
if rpc_is_initialized():
rpc.shutdown()
else:
warnings.warn("RPC has not been initialized")
def rpc_run(args, master_func):
world_size = args.world_size
assert args.num_microbatches >= args.world_size, "num_microbatches cannot be fewer than world_size!"
mp.spawn(run_worker, args=(args, master_func), nprocs=world_size)