mirror of https://github.com/hpcaitech/ColossalAI
65 lines
1.9 KiB
Python
65 lines
1.9 KiB
Python
import copy
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
from lazy_init_utils import SUPPORT_LAZY
|
|
from torch.nn import Parameter
|
|
|
|
from colossalai.lazy import LazyInitContext
|
|
|
|
|
|
@pytest.mark.skipif(not SUPPORT_LAZY, reason="requires torch >= 1.12.0")
|
|
def test_lazy_ops():
|
|
with LazyInitContext():
|
|
x = torch.rand(2, 3)
|
|
assert tuple(x.shape) == (2, 3)
|
|
assert x.device.type == "cpu"
|
|
x.requires_grad is False
|
|
y = x.cuda()
|
|
assert tuple(y.shape) == (2, 3)
|
|
assert y.device.type == "cuda"
|
|
assert y.requires_grad is False
|
|
assert x.cpu() is x
|
|
p = Parameter(torch.empty(2, 3))
|
|
assert tuple(p.shape) == (2, 3)
|
|
assert p.device.type == "cpu"
|
|
assert p.requires_grad is True
|
|
assert isinstance(p, Parameter)
|
|
x.materialize()
|
|
assert tuple(x.shape) == (2, 3)
|
|
assert x.device.type == "cpu"
|
|
assert x.requires_grad is False
|
|
y.materialize()
|
|
assert tuple(y.shape) == (2, 3)
|
|
assert y.device.type == "cuda"
|
|
assert y.requires_grad is False
|
|
p.materialize()
|
|
assert tuple(p.shape) == (2, 3)
|
|
assert p.device.type == "cpu"
|
|
assert p.requires_grad is True
|
|
assert isinstance(p, Parameter)
|
|
|
|
with LazyInitContext():
|
|
x = torch.empty(2, 3)
|
|
x.uniform_()
|
|
x.materialize()
|
|
assert tuple(x.shape) == (2, 3)
|
|
|
|
with LazyInitContext():
|
|
model = nn.Linear(3, 4)
|
|
model = model.cuda()
|
|
model_copied = copy.deepcopy(model)
|
|
LazyInitContext.materialize(model)
|
|
assert model.weight.device.type == "cuda"
|
|
assert model.bias.device.type == "cuda"
|
|
LazyInitContext.materialize(model_copied)
|
|
assert model_copied.weight.device.type == "cuda"
|
|
assert model_copied.bias.device.type == "cuda"
|
|
assert torch.equal(model.weight, model_copied.weight)
|
|
assert torch.equal(model.bias, model_copied.bias)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_lazy_ops()
|