mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.4 KiB
82 lines
2.4 KiB
import hashlib |
|
import os |
|
from abc import ABC, abstractmethod |
|
from typing import Callable, Union |
|
|
|
__all__ = ["_Extension"] |
|
|
|
|
|
class _Extension(ABC): |
|
def __init__(self, name: str, support_aot: bool, support_jit: bool, priority: int = 1): |
|
self._name = name |
|
self._support_aot = support_aot |
|
self._support_jit = support_jit |
|
self.priority = priority |
|
|
|
@property |
|
def name(self): |
|
return self._name |
|
|
|
@property |
|
def support_aot(self): |
|
return self._support_aot |
|
|
|
@property |
|
def support_jit(self): |
|
return self._support_jit |
|
|
|
@staticmethod |
|
def get_jit_extension_folder_path(): |
|
""" |
|
Kernels which are compiled during runtime will be stored in the same cache folder for reuse. |
|
The folder is in the path ~/.cache/colossalai/torch_extensions/<cache-folder>. |
|
The name of the <cache-folder> follows a common format: |
|
torch<torch_version_major>.<torch_version_minor>_<device_name><device_version>-<hash> |
|
|
|
The <hash> suffix is the hash value of the path of the `colossalai` file. |
|
""" |
|
import torch |
|
|
|
import colossalai |
|
from colossalai.accelerator import get_accelerator |
|
|
|
# get torch version |
|
torch_version_major = torch.__version__.split(".")[0] |
|
torch_version_minor = torch.__version__.split(".")[1] |
|
|
|
# get device version |
|
device_name = get_accelerator().name |
|
device_version = get_accelerator().get_version() |
|
|
|
# use colossalai's file path as hash |
|
hash_suffix = hashlib.sha256(colossalai.__file__.encode()).hexdigest() |
|
|
|
# concat |
|
home_directory = os.path.expanduser("~") |
|
extension_directory = f".cache/colossalai/torch_extensions/torch{torch_version_major}.{torch_version_minor}_{device_name}-{device_version}-{hash_suffix}" |
|
cache_directory = os.path.join(home_directory, extension_directory) |
|
return cache_directory |
|
|
|
@abstractmethod |
|
def is_available(self) -> bool: |
|
""" |
|
Check if the hardware required by the kernel is available. |
|
""" |
|
|
|
@abstractmethod |
|
def assert_compatible(self) -> None: |
|
""" |
|
Check if the hardware required by the kernel is compatible. |
|
""" |
|
|
|
@abstractmethod |
|
def build_aot(self) -> Union["CppExtension", "CUDAExtension"]: |
|
pass |
|
|
|
@abstractmethod |
|
def build_jit(self) -> Callable: |
|
pass |
|
|
|
@abstractmethod |
|
def load(self) -> Callable: |
|
pass
|
|
|