mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
489 lines
25 KiB
489 lines
25 KiB
import warnings |
|
from collections import defaultdict |
|
from types import MethodType |
|
from typing import Callable, List, Optional, OrderedDict, Tuple |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch.distributed import ProcessGroup |
|
from torch.nn import Module |
|
from torch.optim import Optimizer |
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler |
|
from torch.utils.data import DataLoader |
|
|
|
from colossalai.booster.plugin.hybrid_parallel_plugin import ( |
|
PRECISION_TORCH_TYPE, |
|
SUPPORT_SP_MODE, |
|
HybridParallelAMPOptimizer, |
|
HybridParallelModule, |
|
HybridParallelNaiveOptimizer, |
|
HybridParallelPlugin, |
|
HybridParallelZeroOptimizer, |
|
get_param_info, |
|
reinitialize_optimizer, |
|
) |
|
from colossalai.checkpoint_io import MoECheckpointIO |
|
from colossalai.cluster.process_group_mesh import ProcessGroupMesh |
|
from colossalai.interface import ModelWrapper, OptimizerWrapper |
|
from colossalai.interface.optimizer import DistributedOptim |
|
from colossalai.nn.optimizer import cast_to_distributed |
|
from colossalai.pipeline.schedule.interleaved_pp import InterleavedSchedule |
|
from colossalai.pipeline.schedule.one_f_one_b import OneForwardOneBackwardSchedule |
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.shardformer.policies.base_policy import Policy |
|
from colossalai.shardformer.shard.grad_ckpt_config import GradientCheckpointConfig |
|
from colossalai.shardformer.shard.shard_config import ShardConfig |
|
from colossalai.tensor.moe_tensor.api import is_moe_tensor |
|
|
|
|
|
class MoeHybridParallelZeroOptimizer(HybridParallelZeroOptimizer): |
|
def __init__( |
|
self, |
|
optimizer: Optimizer, |
|
model: Module, |
|
use_pipeline: bool, |
|
dp_process_group: Optional[ProcessGroup], # the dp pg for comm |
|
tp_process_group: Optional[ProcessGroup], # if using tp |
|
pp_process_group: Optional[ProcessGroup], # if using pp |
|
moe_dp_group: ProcessGroup, # moe dp pg for comm |
|
param_info: OrderedDict, |
|
initial_scale: int = 2**16, # grad scaler config |
|
min_scale: int = 1, |
|
growth_factor: float = 2.0, |
|
backoff_factor: float = 0.5, |
|
growth_interval: int = 2000, |
|
hysteresis: int = 2, |
|
max_scale: int = 2**24, |
|
clip_grad_norm: float = 0.0, # grad clipping |
|
verbose: bool = False, |
|
reduce_bucket_size: int = 1024 * 1024, # communication |
|
communication_dtype: Optional[torch.dtype] = None, |
|
overlap_communication: bool = False, |
|
partition_grad: bool = False, # stage 2 flag |
|
cpu_offload: bool = False, # cpu offload |
|
forced_dtype: Optional[torch.dtype] = None, |
|
overlap_allgather: bool = False, |
|
): |
|
pg_param_list = { |
|
dp_process_group: list(filter(lambda p: not is_moe_tensor(p), model.parameters())), |
|
moe_dp_group: list(filter(is_moe_tensor, model.parameters())), |
|
} |
|
|
|
if len(pg_param_list[dp_process_group]) == 0 or len(pg_param_list[moe_dp_group]) == 0: |
|
raise ValueError("No parameters found in dp_process_group or moe_dp_group") |
|
|
|
super().__init__( |
|
model=model, |
|
optimizer=optimizer, |
|
use_pipeline=use_pipeline, |
|
param_info=param_info, |
|
initial_scale=initial_scale, |
|
min_scale=min_scale, |
|
growth_factor=growth_factor, |
|
backoff_factor=backoff_factor, |
|
growth_interval=growth_interval, |
|
hysteresis=hysteresis, |
|
max_scale=max_scale, |
|
clip_grad_norm=clip_grad_norm, |
|
verbose=verbose, |
|
reduce_bucket_size=reduce_bucket_size, |
|
communication_dtype=communication_dtype, |
|
overlap_communication=overlap_communication, |
|
partition_grad=partition_grad, |
|
cpu_offload=cpu_offload, |
|
tp_process_group=tp_process_group, |
|
pp_process_group=pp_process_group, |
|
forced_dtype=forced_dtype, |
|
pg_to_param_list=pg_param_list, |
|
overlap_allgather=overlap_allgather, |
|
) |
|
|
|
|
|
class MoeHybridParallelPlugin(HybridParallelPlugin): |
|
""" |
|
Plugin for MoE Hybrid Parallel Training, which is similar to HybridParallelPlugin |
|
Tensor parallel, pipeline parallel and data parallel(DDP/ZeRO) can be picked and combined in this plugin. |
|
The size of tp and pp should be passed in by user, then the size of dp is automatically calculated from dp_size = world_size / (tp_size * pp_size). |
|
|
|
```python |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import MoeHybridParallelPlugin |
|
|
|
model, train_dataset, optimizer, criterion = ... |
|
plugin = MoeHybridParallelPlugin(tp_size=2, pp_size=2, ep_size=2) |
|
|
|
train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8) |
|
booster = Booster(plugin=plugin) |
|
model, optimizer, criterion, train_dataloader, _ = booster.boost(model, optimizer, criterion, train_dataloader) |
|
``` |
|
|
|
Args: |
|
tp_size (int): The size of tensor parallelism. Tensor parallelism will not be used when tp_size is set to 1. |
|
pp_size (int): The number of pipeline stages in pipeline parallelism. Pipeline parallelism will not be used when pp_size is set to 1. |
|
ep_size (int): The size of expert parallelism |
|
sp_size (int): The size of sequence parallelism. |
|
precision (str, optional): Specifies the precision of parameters during training. |
|
Auto-mixied precision will be used when this argument is set to 'fp16' or 'bf16', otherwise model is trained with 'fp32'. |
|
Defaults to 'fp16'. |
|
zero_stage (int, optional): The stage of ZeRO for data parallelism. Can only be choosed from [0, 1, 2]. |
|
When set to 0, ZeRO will not be used. Defaults to 0. |
|
enable_all_optimization (bool, optional): Whether to switch on all the optimizations supported by Shardformer. |
|
Currently all the optimization methods include fused normalization, flash attention and JIT. |
|
Defaults to False. |
|
enable_fused_normalization (bool, optional): Whether to switch on fused normalization in Shardformer. Defaults to False. |
|
enable_flash_attention (bool, optional): Whether to switch on flash attention in Shardformer. Defaults to False. |
|
enable_jit_fused (bool, optional): Whether to switch on JIT in Shardformer. Default to False. |
|
enable_sequence_parallelism (bool): Whether to turn on sequence parallelism in Shardformer. Defaults to False. |
|
sequence_parallelism_mode (str): The Sequence parallelism mode. Can only be choosed from ["split_gather", "ring", "all_to_all"]. Defaults to "split_gather". |
|
enable_sequence_overlap (bool): Whether to turn on sequence overlap in Shardformer. Defaults to False. |
|
parallel_output (bool): Whether to keep the output parallel when enabling tensor parallelism. Default to True. |
|
num_microbatches (int, optional): Number of microbatches when using pipeline parallelism. Defaults to None. |
|
microbatch_size (int, optional): Microbatch size when using pipeline parallelism. |
|
Either ``num_microbatches`` or ``microbatch_size`` should be provided if using pipeline. |
|
If ``num_microbatches`` is provided, this will be ignored. Defaults to None. |
|
initial_scale (float, optional): The initial loss scale of AMP. Defaults to 2**16. |
|
min_scale (float, optional): The minimum loss scale of AMP. Defaults to 1. |
|
growth_factor (float, optional): The multiplication factor for increasing loss scale when using AMP. Defaults to 2. |
|
backoff_factor (float, optional): The multiplication factor for decreasing loss scale when using AMP. Defaults to 0.5. |
|
growth_interval (int, optional): The number of steps to increase loss scale when no overflow occurs when using AMP. Defaults to 1000. |
|
hysteresis (int, optional): The number of overflows before decreasing loss scale when using AMP. Defaults to 2. |
|
max_scale (float, optional): The maximum loss scale of AMP. Defaults to 2**32. |
|
max_norm (float, optional): Maximum norm for gradient clipping. Defaults to 0. |
|
broadcast_buffers (bool, optional): Whether to broadcast buffers in the beginning of training when using DDP. Defaults to True. |
|
ddp_bucket_cap_mb (int, optional): The bucket size in MB when using DDP. Defaults to 25. |
|
find_unused_parameters (bool, optional): Whether to find unused parameters when using DDP. Defaults to False. |
|
check_reduction (bool, optional): Whether to check reduction when using DDP. Defaults to False. |
|
gradient_as_bucket_view (bool, optional): Whether to use gradient as bucket view when using DDP. Defaults to False. |
|
static_graph (bool, optional): Whether to use static graph when using DDP. Defaults to False. |
|
zero_bucket_size_in_m (int, optional): Gradient reduce bucket size in million elements when using ZeRO. Defaults to 12. |
|
cpu_offload (bool, optional): Whether to open cpu_offload when using ZeRO. Defaults to False. |
|
communication_dtype (torch.dtype, optional): Communication dtype when using ZeRO. If not specified, the dtype of param will be used. Defaults to None. |
|
overlap_communication (bool, optional): Whether to overlap communication and computation when using ZeRO. Defaults to True. |
|
custom_policy (Policy, optional): Custom policy for Shardformer. Defaults to None. |
|
pp_style (str, optional): The style for pipeline parallelism. Defaults to '1f1b'. |
|
num_model_chunks (int, optional): The number of model chunks for interleaved pipeline parallelism. Defaults to 1. |
|
gradient_checkpoint_config (GradientCheckpointConfig, optional): Configuration for gradient checkpointing. Defaults to None. |
|
enable_metadata_cache (bool, optional): Whether to enable metadata cache for pipeline parallelism. Defaults to True. |
|
make_vocab_size_divisible_by (int, optional): it's used when padding the vocabulary size, to make it choose an faster kenel. Default to 64. |
|
overlap_p2p (bool, optional): Whether to overlap the p2p communication in pipeline parallelism |
|
""" |
|
|
|
def __init__( |
|
self, |
|
tp_size: int, |
|
pp_size: int, |
|
ep_size: int, |
|
sp_size: int = None, |
|
precision: str = "fp16", |
|
zero_stage: int = 0, |
|
enable_all_optimization: bool = False, |
|
enable_fused_normalization: bool = False, |
|
enable_flash_attention: bool = False, |
|
enable_jit_fused: bool = False, |
|
enable_sequence_parallelism: bool = False, |
|
sequence_parallelism_mode: str = None, |
|
enable_sequence_overlap: bool = False, |
|
parallel_output: bool = True, |
|
num_microbatches: Optional[int] = None, |
|
microbatch_size: Optional[int] = None, |
|
initial_scale: float = 2**16, |
|
min_scale: float = 1, |
|
growth_factor: float = 2, |
|
backoff_factor: float = 0.5, |
|
growth_interval: int = 1000, |
|
hysteresis: int = 2, |
|
max_scale: float = 2**32, |
|
max_norm: float = 0, |
|
broadcast_buffers: bool = True, |
|
ddp_bucket_cap_mb: int = 25, |
|
find_unused_parameters: bool = False, |
|
check_reduction: bool = False, |
|
gradient_as_bucket_view: bool = False, |
|
static_graph: bool = False, |
|
zero_bucket_size_in_m: int = 12, |
|
cpu_offload: bool = False, |
|
communication_dtype: Optional[torch.dtype] = None, |
|
overlap_communication: bool = False, |
|
custom_policy: Policy = None, |
|
pp_style: str = "1f1b", |
|
num_model_chunks: int = 1, |
|
num_layers_per_stage: Optional[List[int]] = None, |
|
gradient_checkpoint_config: Optional[GradientCheckpointConfig] = None, |
|
enable_metadata_cache: bool = True, |
|
make_vocab_size_divisible_by: int = 64, |
|
moe_dp_outside: bool = True, |
|
overlap_p2p: bool = True, |
|
overlap_allgather: bool = False, |
|
) -> None: |
|
if overlap_communication or zero_stage == 2: |
|
overlap_communication = False |
|
zero_stage = 1 |
|
warnings.warn( |
|
f"overlap_communication and zero_stage are set to False and 1 because " |
|
f"ZeRO-2 or comm overlap cause program hang when some experts are not routed. " |
|
) |
|
|
|
assert ( |
|
dist.get_world_size() % (tp_size * pp_size) == 0 |
|
), f"World size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}" |
|
if enable_sequence_parallelism: |
|
self.sequence_parallelism_mode = ( |
|
sequence_parallelism_mode if sequence_parallelism_mode is not None else "all_to_all" |
|
) |
|
assert ( |
|
self.sequence_parallelism_mode in SUPPORT_SP_MODE |
|
), f"Sequence parallelism mode {self.sequence_parallelism_mode} is not in the supported list {SUPPORT_SP_MODE}" |
|
if self.sequence_parallelism_mode in ["split_gather", "ring"]: |
|
assert ( |
|
tp_size > 1 |
|
), f"Sequence parallelism mode {self.sequence_parallelism_mode} must be enabled when using tensor parallelism" |
|
if sp_size != 1: |
|
warnings.warn( |
|
f"The sp_size will be the same as tp_size in sequence parallelism mode {self.sequence_parallelism_mode}, will ignore the given sequence parallelism size." |
|
) |
|
self.sp_size = 1 |
|
self.dp_size = dist.get_world_size() // (tp_size * pp_size) |
|
elif self.sequence_parallelism_mode in ["all_to_all"]: |
|
self.sp_size = 1 if sp_size is None else sp_size |
|
self.dp_size = dist.get_world_size() // (self.sp_size * pp_size * tp_size) |
|
else: |
|
self.dp_size = dist.get_world_size() // (tp_size * pp_size) |
|
assert ( |
|
sp_size == 1 or sp_size is None |
|
), f"You should not set sp_size when sequence parallelism is not enabled." |
|
self.sp_size = 1 |
|
|
|
assert self.dp_size % ep_size == 0, f"dp_size should be divisible by ep_size, {self.dp_size=} {ep_size=}" |
|
self.moe_dp_size = self.dp_size // ep_size |
|
self.ep_size = ep_size |
|
self.tp_size = tp_size |
|
self.pp_size = pp_size |
|
self.precision = precision |
|
self.zero_stage = zero_stage |
|
self.cpu_offload = cpu_offload |
|
self.enable_all_optimization = enable_all_optimization |
|
self.enable_fused_normalization = enable_fused_normalization |
|
self.enable_flash_attention = enable_flash_attention |
|
self.enable_jit_fused = enable_jit_fused |
|
self.enable_sequence_parallelism = enable_sequence_parallelism |
|
if moe_dp_outside: |
|
self.moe_dp_axis, self.pp_axis, self.ep_axis, self.tp_axis, self.sp_axis = 0, 1, 2, 3, 4 |
|
self.pg_mesh = ProcessGroupMesh(self.moe_dp_size, self.pp_size, self.ep_size, self.tp_size, self.sp_size) |
|
else: |
|
self.pp_axis, self.moe_dp_axis, self.ep_axis, self.tp_axis, self.sp_axis = 0, 1, 2, 3, 4 |
|
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.moe_dp_size, self.ep_size, self.tp_size, self.sp_size) |
|
|
|
self.stage_manager = None |
|
self.schedule = None |
|
self.custom_policy = custom_policy |
|
assert zero_stage in (0, 1, 2) |
|
if self.pp_size > 1: |
|
assert pp_style in ["1f1b", "interleaved"], "Unsupported pipeline parallelism style" |
|
assert pp_style == "interleaved" or num_model_chunks == 1, "num_model_chunks must be 1 when using 1f1b" |
|
assert ( |
|
num_microbatches is not None or microbatch_size is not None |
|
), "num_microbatches or microbatch_size must be specified when using pipeline parallelism" |
|
assert ( |
|
self.zero_stage <= 1 |
|
), "To avoid prohibitive gradient synchronization costs, zero stage must be 0 or 1 when using pipeline parallelism" |
|
self.stage_manager = PipelineStageManager( |
|
self.pg_mesh, |
|
pipeline_axis=self.pp_axis, |
|
enable_interleave=pp_style == "interleaved", |
|
num_model_chunks=num_model_chunks, |
|
num_layers_per_stage=num_layers_per_stage, |
|
) |
|
|
|
if pp_style == "interleaved": |
|
assert num_model_chunks > 1, "number of model chunks must be > 1 when using interleaved" |
|
self.schedule = InterleavedSchedule( |
|
stage_manager=self.stage_manager, |
|
num_model_chunks=num_model_chunks, |
|
num_microbatch=num_microbatches, |
|
microbatch_size=microbatch_size, |
|
enable_metadata_cache=enable_metadata_cache, |
|
overlap_p2p=overlap_p2p, |
|
) |
|
elif pp_style == "1f1b": |
|
self.schedule = OneForwardOneBackwardSchedule( |
|
stage_manager=self.stage_manager, |
|
num_microbatches=num_microbatches, |
|
microbatch_size=microbatch_size, |
|
enable_metadata_cache=enable_metadata_cache, |
|
) |
|
else: |
|
raise NotImplementedError() |
|
|
|
self.tp_group = self.pg_mesh.get_group_along_axis(self.tp_axis) |
|
self.dp_group = self.pg_mesh.get_group_along_axis([self.moe_dp_axis, self.ep_axis]) |
|
self.pp_group = self.pg_mesh.get_group_along_axis(self.pp_axis) |
|
self.moe_dp_group = self.pg_mesh.get_group_along_axis(self.moe_dp_axis) |
|
self.ep_group = self.pg_mesh.get_group_along_axis(self.ep_axis) |
|
if self.enable_sequence_parallelism and self.sequence_parallelism_mode in ["split_gather", "ring"]: |
|
self.sp_group = self.pg_mesh.get_group_along_axis(self.tp_axis) |
|
else: |
|
self.sp_group = self.pg_mesh.get_group_along_axis(self.sp_axis) |
|
|
|
self.shard_config = ShardConfig( |
|
tensor_parallel_process_group=self.tp_group, |
|
sequence_parallel_process_group=self.sp_group, |
|
ep_group=self.ep_group, |
|
moe_dp_group=self.moe_dp_group, |
|
pipeline_stage_manager=self.stage_manager, |
|
enable_tensor_parallelism=self.tp_size > 1, |
|
enable_all_optimization=self.enable_all_optimization, |
|
enable_fused_normalization=self.enable_fused_normalization, |
|
enable_flash_attention=self.enable_flash_attention, |
|
enable_jit_fused=self.enable_jit_fused, |
|
enable_sequence_parallelism=enable_sequence_parallelism, |
|
sequence_parallelism_mode=sequence_parallelism_mode, |
|
enable_sequence_overlap=enable_sequence_overlap, |
|
parallel_output=parallel_output, |
|
make_vocab_size_divisible_by=make_vocab_size_divisible_by, |
|
gradient_checkpoint_config=gradient_checkpoint_config, |
|
) |
|
self.amp_config = dict( |
|
initial_scale=initial_scale, |
|
growth_factor=growth_factor, |
|
backoff_factor=backoff_factor, |
|
growth_interval=growth_interval, |
|
hysteresis=hysteresis, |
|
min_scale=min_scale, |
|
max_scale=max_scale, |
|
) |
|
|
|
self.ddp_config = dict( |
|
broadcast_buffers=broadcast_buffers, |
|
bucket_cap_mb=ddp_bucket_cap_mb, |
|
find_unused_parameters=find_unused_parameters, |
|
check_reduction=check_reduction, |
|
gradient_as_bucket_view=gradient_as_bucket_view, |
|
static_graph=static_graph, |
|
) |
|
|
|
self.zero_config = dict( |
|
reduce_bucket_size=zero_bucket_size_in_m * 1024 * 1024, |
|
communication_dtype=communication_dtype, |
|
overlap_communication=overlap_communication, |
|
cpu_offload=cpu_offload, |
|
partition_grad=(self.zero_stage == 2), |
|
forced_dtype=PRECISION_TORCH_TYPE[precision], |
|
overlap_allgather=overlap_allgather, |
|
) |
|
|
|
self.max_norm = max_norm |
|
|
|
def get_checkpoint_io(self) -> MoECheckpointIO: |
|
return MoECheckpointIO( |
|
self.dp_group, self.pp_group, self.tp_group, self.ep_group, self.moe_dp_group, self.zero_stage |
|
) |
|
|
|
def configure( |
|
self, |
|
model: Module, |
|
optimizer: Optional[Optimizer] = None, |
|
criterion: Optional[Callable] = None, |
|
dataloader: Optional[DataLoader] = None, |
|
lr_scheduler: Optional[LRScheduler] = None, |
|
) -> Tuple[Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]: |
|
param_info = get_param_info(optimizer) |
|
|
|
# TODO: Support Galore + ZeRO |
|
# Replace with distributed implementation if exists |
|
optimizer = cast_to_distributed(optimizer) |
|
|
|
if not isinstance(model, ModelWrapper): |
|
use_ddp = (self.dp_size > 1 and self.pp_size == 1 and self.zero_stage == 0) or ( |
|
self.dp_size == 1 |
|
and self.pp_size == 1 |
|
and self.enable_sequence_parallelism |
|
and self.sequence_parallelism_mode == "all_to_all" |
|
) |
|
if use_ddp: |
|
warnings.warn( |
|
f"Will have to check all params are used in pytorch DDP since not all experts are always activated" |
|
) |
|
self.ddp_config["find_unused_parameters"] = True |
|
|
|
if dist.get_process_group_ranks(self.dp_group) != dist.get_process_group_ranks(self.moe_dp_group): |
|
raise ValueError( |
|
f"if pytorch ddp is used, dp_group and moe_dp_group are expected to be the same since DDP can only reduce grad across a single group, but found dp_group {dist.get_process_group_ranks(self.dp_group)} and moe_dp_group {dist.get_process_group_ranks(self.moe_dp_group)}, you might want to use HybridParallelPlugin (i.e. set ep_size = 1) or set zero_stage > 0" |
|
) |
|
|
|
# sync gradients across DP * SP ranks |
|
if self.enable_sequence_parallelism and self.sequence_parallelism_mode == "all_to_all": |
|
dp_group = self.pg_mesh.create_group_along_axis([self.moe_dp_axis, self.ep_axis, self.sp_axis]) |
|
else: |
|
dp_group = self.dp_group |
|
|
|
model = HybridParallelModule( |
|
module=model, |
|
precision=self.precision, |
|
shard_config=self.shard_config, |
|
dp_group=dp_group, |
|
tp_group=self.tp_group, |
|
sp_group=self.sp_group, |
|
use_ddp=use_ddp, |
|
ddp_config=self.ddp_config, |
|
custom_policy=self.custom_policy, |
|
) |
|
if optimizer is not None and not isinstance(optimizer, OptimizerWrapper): |
|
if self.ep_size > 1: |
|
# if ep is enabled, the num of (moe) paramaters changed since they are sharded among ep groups |
|
# but the optimizer is not aware of ep, so we need to update the optimizer |
|
reinitialize_optimizer(optimizer, model) |
|
|
|
if self.zero_stage == 0: |
|
is_zero = False |
|
if self.precision in ["fp16", "bf16"]: |
|
optimizer = HybridParallelAMPOptimizer( |
|
optimizer, |
|
model, |
|
use_pipeline=self.enable_pipeline_parallelism, |
|
param_info=param_info, |
|
precision=self.precision, |
|
max_norm=self.max_norm, |
|
**self.amp_config, |
|
) |
|
else: |
|
optimizer = HybridParallelNaiveOptimizer( |
|
optimizer, |
|
model, |
|
use_pipeline=self.enable_pipeline_parallelism, |
|
param_info=param_info, |
|
max_norm=self.max_norm, |
|
pp_process_group=self.pp_group, |
|
tp_process_group=self.tp_group, |
|
) |
|
else: |
|
if self.dp_size <= 1: |
|
warnings.warn( |
|
"Use Zero Optimizer when data parallel size is 1 may introduce unnecessary overhead. " |
|
"If you do not intend to use cpu_offload, please consider set zero_stage=0." |
|
) |
|
assert self.precision != "fp32", "Please set precision to 'fp16' or 'bf16' when using ZeRO." |
|
optimizer = MoeHybridParallelZeroOptimizer( |
|
optimizer, |
|
model, |
|
use_pipeline=self.enable_pipeline_parallelism, |
|
param_info=param_info, |
|
dp_process_group=dp_group, |
|
tp_process_group=self.tp_group, |
|
pp_process_group=self.pp_group, |
|
moe_dp_group=self.moe_dp_group, |
|
verbose=True, |
|
clip_grad_norm=self.max_norm, |
|
**self.zero_config, |
|
**self.amp_config, |
|
) |
|
# inject update_master_params |
|
model.update_master_params = MethodType(optimizer.update_master_params, model) |
|
|
|
# Setup optimizers that require global states |
|
optim = optimizer.optim |
|
if isinstance(optim, DistributedOptim): |
|
shard_to_param = optimizer.get_master_to_working_map() if is_zero else {} |
|
padding_map = optimizer.get_param_padding_map() if is_zero else defaultdict(int) |
|
optim.setup_distributed(self.tp_group, self.dp_group, shard_to_param, padding_map, is_zero) |
|
|
|
return model, optimizer, criterion, dataloader, lr_scheduler
|
|
|