mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
592 lines
28 KiB
592 lines
28 KiB
import gc |
|
import logging |
|
import os |
|
import random |
|
from pathlib import Path |
|
from typing import Callable, Dict, Iterator, List, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch.distributed.distributed_c10d import _get_default_group |
|
from torch.optim import Optimizer |
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
|
|
from colossalai.accelerator import get_accelerator |
|
from colossalai.checkpoint_io import CheckpointIndexFile, CheckpointIO, GeneralCheckpointIO |
|
from colossalai.checkpoint_io.utils import ( |
|
get_model_base_filenames, |
|
get_optimizer_base_filenames, |
|
load_shard_state_dict, |
|
save_config_file, |
|
save_state_dict, |
|
save_state_dict_shards, |
|
) |
|
from colossalai.cluster import DistCoordinator, ProcessGroupMesh |
|
from colossalai.interface import ModelWrapper, OptimizerWrapper |
|
from colossalai.shardformer import ShardConfig, ShardFormer |
|
from colossalai.zero import GeminiDDP, GeminiOptimizer |
|
from colossalai.zero.gemini.memory_tracer import MemStats |
|
|
|
from .dp_plugin_base import DPPluginBase |
|
|
|
__all__ = ["GeminiPlugin"] |
|
|
|
SUPPORTED_PRECISION = ["fp16", "bf16"] |
|
PRECISION_STR_TO_DTYPE = {"fp16": torch.half, "bf16": torch.bfloat16} |
|
|
|
ZERO_AXIS, DP_AXIS, TP_AXIS = 0, 1, 2 |
|
|
|
|
|
def get_param_info(optim: Optimizer): |
|
# Get a backup of necessary information of parameters for future use, which includes: |
|
# 1. A mapping from integer param_id to param32 shape. |
|
if optim is None: |
|
return {} |
|
param_info = {"id2shape": {}} |
|
|
|
start_index = 0 |
|
for group in optim.param_groups: |
|
for param_id, param in enumerate(group["params"], start_index): |
|
original_shape = param.shape if isinstance(param, torch.Tensor) else None |
|
param_info["id2shape"][param_id] = original_shape |
|
|
|
start_index += len(group["params"]) |
|
|
|
return param_info |
|
|
|
|
|
class GeminiCheckpointIO(GeneralCheckpointIO): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
self.coordinator = DistCoordinator() |
|
|
|
def save_unsharded_model(self, model: GeminiDDP, checkpoint: str, gather_dtensor: bool, use_safetensors: bool): |
|
""" |
|
Save sharded model to checkpoint but only on master process. |
|
The model should be unwrapped in self.load_model via ModelWrapper.unwrap. |
|
As there is communication when getting state dict, model.state_dict() must be called on all processes. |
|
""" |
|
assert isinstance(model, GeminiDDP), "Please boost the model before saving!" |
|
state_dict = model.state_dict(only_rank_0=True) |
|
if self.coordinator.is_master(): |
|
save_state_dict(state_dict, checkpoint, use_safetensors) |
|
|
|
def load_unsharded_model(self, model: GeminiDDP, checkpoint: str, strict: bool = True): |
|
""" |
|
Load model from checkpoint with automatic unwrapping. |
|
The model should be unwrapped in self.load_model via ModelWrapper.unwrap. |
|
""" |
|
assert isinstance(model, GeminiDDP), "Please boost the model before loading!" |
|
super().load_unsharded_model(model, checkpoint, strict=strict) |
|
|
|
def save_unsharded_optimizer(self, optimizer: GeminiOptimizer, checkpoint: str, gather_dtensor: bool): |
|
""" |
|
Save unsharded optimizer state dict to checkpoint. |
|
After calling optimizer.state_dict(), the complete optimizer states will be collected on master rank. |
|
As there is communication when getting state dict, optimizer.state_dict() must be called on all processes. |
|
The saving process will only be executed by master rank. |
|
""" |
|
assert isinstance(optimizer, GeminiOptimizer), "Please boost the optimizer before saving!" |
|
state_dict = optimizer.state_dict() |
|
if self.coordinator.is_master(): |
|
save_state_dict(state_dict, checkpoint, use_safetensors=False) |
|
|
|
def load_unsharded_optimizer(self, optimizer: GeminiOptimizer, checkpoint: str): |
|
""" |
|
Loading unsharded optimizer from checkpoint file. |
|
For each process, only loading optimizer states of parameters it controls. |
|
""" |
|
assert isinstance(optimizer, GeminiOptimizer), "Please boost the optimizer before loading!" |
|
super().load_unsharded_optimizer(optimizer, checkpoint) |
|
|
|
def save_sharded_model( |
|
self, |
|
model: GeminiDDP, |
|
checkpoint_path: str, |
|
gather_dtensor: bool = False, |
|
prefix: Optional[str] = None, |
|
max_shard_size: int = 1024, |
|
use_safetensors: bool = False, |
|
): |
|
""" |
|
Save sharded model. |
|
As there is communication when getting state dict, model.state_dict() must be called on all processes. |
|
""" |
|
assert isinstance(model, GeminiDDP), "Please boost the model before saving!" |
|
if os.path.isfile(checkpoint_path): |
|
logging.error(f"Provided path ({checkpoint_path}) should be a directory, not a file") |
|
return |
|
|
|
Path(checkpoint_path).mkdir(parents=True, exist_ok=True) |
|
|
|
state_dict_shard = model.state_dict_shard(max_shard_size=max_shard_size, only_rank_0=True) |
|
weights_name, save_index_file = get_model_base_filenames(prefix, use_safetensors) |
|
index_file = CheckpointIndexFile(checkpoint_path) |
|
|
|
# Save shards of optimizer states. |
|
is_master = self.coordinator.is_master() |
|
total_size = save_state_dict_shards( |
|
sharded_state_dict=state_dict_shard, |
|
checkpoint=checkpoint_path, |
|
index_file=index_file, |
|
base_filename=weights_name, |
|
is_master=is_master, |
|
use_safetensors=use_safetensors, |
|
) |
|
|
|
# only save the index file on the master rank |
|
if self.coordinator.is_master(): |
|
index_file.append_meta_data("total_size", total_size) |
|
index_file.write_index_file(save_index_file) |
|
save_config_file(model.unwrap(), checkpoint_path) |
|
logging.info( |
|
f"The model is split into checkpoint shards. " |
|
f"You can find where each parameters has been saved in the " |
|
f"index located at {save_index_file}." |
|
) |
|
|
|
def load_sharded_model( |
|
self, model: GeminiDDP, checkpoint_index_file: Path, strict: bool = False, use_safetensors: bool = False |
|
): |
|
""" |
|
Load shard model, load model from multiple files. |
|
""" |
|
assert isinstance(model, GeminiDDP), "Please boost the model before loading!" |
|
return super().load_sharded_model(model, checkpoint_index_file, strict, use_safetensors, load_sub_module=False) |
|
|
|
def save_sharded_optimizer( |
|
self, optimizer: GeminiOptimizer, checkpoint: Path, gather_dtensor: bool, prefix: str, size_per_shard: int |
|
): |
|
""" |
|
Save sharded optimizer state dict to checkpoint folder. |
|
As there is communication when getting state dict, this must be called on all processes. |
|
""" |
|
assert isinstance(optimizer, GeminiOptimizer), "Please boost the optimizer before saving!" |
|
|
|
if os.path.isfile(checkpoint): |
|
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file") |
|
return |
|
|
|
Path(checkpoint).mkdir(parents=True, exist_ok=True) |
|
|
|
# Preparing file paths and index file. |
|
states_name, save_index_file, param_group_file = get_optimizer_base_filenames(prefix) |
|
index_file = CheckpointIndexFile(checkpoint) |
|
index_file.append_meta_data("param_groups", param_group_file) |
|
|
|
# Store the information of param groups to param_group_file. |
|
if self.coordinator.is_master(): |
|
group_file_path = os.path.join(checkpoint, param_group_file) |
|
param_groups = optimizer.get_param_groups_for_saving() |
|
torch.save(param_groups, group_file_path) |
|
|
|
# States are broken into shards within max_shard_size. |
|
state_dict_shard = optimizer.state_shard(prefix=prefix, max_shard_size=size_per_shard, only_rank_0=True) |
|
|
|
# Save shards of optimizer states. |
|
total_size = save_state_dict_shards( |
|
sharded_state_dict=state_dict_shard, |
|
checkpoint=checkpoint, |
|
index_file=index_file, |
|
base_filename=states_name, |
|
is_master=self.coordinator.is_master(), |
|
use_safetensors=False, |
|
) |
|
|
|
# Wrap up index file. Only save it on master rank. |
|
if self.coordinator.is_master(): |
|
index_file.append_meta_data("total_size", total_size) |
|
index_file.write_index_file(save_index_file) |
|
logging.info( |
|
f"The optimizer is going to be split to checkpoint shards. " |
|
f"You can find where each parameters has been saved in the " |
|
f"index located at {save_index_file}." |
|
) |
|
|
|
def load_sharded_optimizer(self, optimizer: GeminiOptimizer, checkpoint_index_file: Path, prefix: str): |
|
""" |
|
Loading sharded optimizer from checkpoint folder, with index file given. |
|
For each process, only loading optimizer states of parameters it controls. |
|
""" |
|
assert isinstance(optimizer, GeminiOptimizer), "Please boost the optimizer before loading!" |
|
if not os.path.isfile(checkpoint_index_file): |
|
logging.error(f"Provided path ({checkpoint_index_file}) should be a file") |
|
|
|
assert isinstance(optimizer, GeminiOptimizer) |
|
|
|
# Read checkpoint index file. |
|
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file) |
|
|
|
# Load param_groups. |
|
param_group_path = ckpt_index_file.get_param_group_filename() |
|
if param_group_path is None: |
|
raise RuntimeError( |
|
f"Invalid index file path {checkpoint_index_file} for an optimizer. \ |
|
Lacking param group file under current directory." |
|
) |
|
saved_param_groups = torch.load(param_group_path) |
|
optimizer.load_param_groups(saved_param_groups) |
|
|
|
checkpoint_files, _ = ckpt_index_file.get_checkpoint_filenames() |
|
|
|
# Load optimizer states from shard files under checkpoint path. |
|
# For each file, only load the states managed by current process. |
|
for shard_file in checkpoint_files: |
|
state_dict_shard = load_shard_state_dict(Path(shard_file), use_safetensors=False) |
|
optimizer.load_param_states(state_dict_shard) |
|
del state_dict_shard |
|
gc.collect() |
|
|
|
optimizer.optimizer_loading_epilogue() |
|
|
|
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str): |
|
""" |
|
Save model to checkpoint but only on master process. |
|
""" |
|
if self.coordinator.is_master(): |
|
super().save_lr_scheduler(lr_scheduler, checkpoint) |
|
|
|
|
|
class GeminiPlugin(DPPluginBase): |
|
""" |
|
Plugin for Gemini. |
|
|
|
```python |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import GeminiPlugin |
|
|
|
model, train_dataset, optimizer, criterion = ... |
|
plugin = GeminiPlugin() |
|
|
|
train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8) |
|
booster = Booster(plugin=plugin) |
|
model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion) |
|
``` |
|
|
|
Args: |
|
chunk_config_dict (dict, optional): chunk configuration dictionary. |
|
chunk_init_device (torch.device, optional): device to initialize the chunk. |
|
placement_policy (str, optional): "static" and "auto". Defaults to "static". |
|
enable_gradient_accumulation (bool, optional): Whether to enable gradient accumulation. When set to True, gradient will be stored after doing backward pass. Defaults to False. |
|
shard_param_frac (float, optional): fraction of parameters to be sharded. Only for "static" placement. |
|
If `shard_param_frac` is 1.0, it's equal to zero-3. If `shard_param_frac` is 0.0, it's equal to zero-2. Defaults to 1.0. |
|
offload_optim_frac (float, optional): fraction of optimizer states to be offloaded. Only for "static" placement. |
|
If `shard_param_frac` is 1.0 and `offload_optim_frac` is 0.0, it's equal to old "cuda" placement. Defaults to 0.0. |
|
offload_param_frac (float, optional): fraction of parameters to be offloaded. Only for "static" placement. |
|
For efficiency, this argument is useful only when `shard_param_frac` is 1.0 and `offload_optim_frac` is 1.0. |
|
If `shard_param_frac` is 1.0, `offload_optim_frac` is 1.0 and `offload_param_frac` is 1.0, it's equal to old "cpu" placement. |
|
When using static placement, we recommend users to tune `shard_param_frac` first and then `offload_optim_frac`. |
|
Defaults to 0.0. |
|
warmup_non_model_data_ratio (float, optional): ratio of expected non-model data memory during warmup. Only for "auto" placement. Defaults to 0.8. |
|
steady_cuda_cap_ratio (float, optional): ratio of allowed cuda capacity for model data during steady state. Only for "auto" placement. Defaults to 0.9. |
|
precision (str, optional): precision. Support 'fp16' and 'bf16'. Defaults to 'fp16'. |
|
master_weights (bool, optional): Whether to keep fp32 master parameter weights in optimizer. Defaults to True. |
|
pin_memory (bool, optional): use pin memory on CPU. Defaults to False. |
|
force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False. |
|
strict_ddp_mode (bool, optional): use strict ddp mode (only use dp without other parallelism). Defaults to False. |
|
search_range_m (int, optional): chunk size searching range divided by 2^20. Defaults to 32. |
|
hidden_dim (int, optional): the hidden dimension of DNN. |
|
Users can provide this argument to speed up searching. |
|
If users do not know this argument before training, it is ok. We will use a default value 1024. |
|
min_chunk_size_m (float, optional): the minimum chunk size divided by 2^20. |
|
If the aggregate size of parameters is still smaller than the minimum chunk size, |
|
all parameters will be compacted into one small chunk. |
|
memstats (MemStats, optional) the memory statistics collector by a runtime memory tracer. |
|
gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward) |
|
which will be used when using hybrid CPU optimizer. |
|
This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto". |
|
Defaults to 0.0. |
|
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**16. |
|
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1. |
|
growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2. |
|
backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5. |
|
growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000. |
|
hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2. |
|
max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32. |
|
max_norm (float, optional): max_norm used for `clip_grad_norm`. You should notice that you shall not do |
|
clip_grad_norm by yourself when using ZeRO DDP. The ZeRO optimizer will take care of clip_grad_norm. |
|
norm_type (float, optional): norm_type used for `clip_grad_norm`. |
|
tp_size (int, optional): If 'tp_size' is set to be greater than 1, it means using tensor parallelism strategy, which is implemented in Shardformer, 'tp_size' determines the size of the tensor parallel process group. Default to 1. |
|
extra_dp_size (int, optional): If 'extra_dp_size' is set to be greater than 1, it means creating another group to run with a ddp-like strategy. Default to 1. |
|
enable_all_optimization (bool, optional): Whether to switch on all the optimizations supported by Shardformer. |
|
Currently all the optimization methods include fused normalization, flash attention and JIT. |
|
Defaults to False. |
|
enable_fused_normalization (bool, optional): Whether to switch on fused normalization in Shardformer. Defaults to False. |
|
enable_flash_attention (bool, optional): Whether to switch on flash attention in Shardformer. Defaults to False. |
|
enable_jit_fused (bool, optional): Whether to switch on JIT in Shardformer. Default to False. |
|
enable_sequence_parallelism (bool): Whether to turn on sequence parallelism in Shardformer. Defaults to False. |
|
enable_sequence_overlap (bool): Whether to turn on sequence overlap in Shardformer. Defaults to False. |
|
verbose (bool, optional): verbose mode. Debug info including chunk search result will be printed. Defaults to False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
chunk_config_dict: Optional[dict] = None, |
|
chunk_init_device: Optional[torch.device] = None, |
|
placement_policy: str = "static", |
|
enable_gradient_accumulation: bool = False, |
|
max_prefetch: int = 0, |
|
shard_param_frac: float = 1.0, # only for static placement |
|
offload_optim_frac: float = 0.0, # only for static placement |
|
offload_param_frac: float = 0.0, # only for static placement |
|
warmup_non_model_data_ratio: float = 0.8, # only for auto placement |
|
steady_cuda_cap_ratio: float = 0.9, # only for auto placement |
|
precision: str = "fp16", |
|
master_weights: bool = True, |
|
pin_memory: bool = False, |
|
force_outputs_fp32: bool = False, |
|
strict_ddp_mode: bool = False, |
|
search_range_m: int = 32, |
|
hidden_dim: Optional[int] = None, |
|
min_chunk_size_m: float = 32, |
|
memstats: Optional[MemStats] = None, |
|
gpu_margin_mem_ratio: float = 0.0, |
|
initial_scale: float = 2**16, |
|
min_scale: float = 1, |
|
growth_factor: float = 2, |
|
backoff_factor: float = 0.5, |
|
growth_interval: int = 1000, |
|
hysteresis: int = 2, |
|
max_scale: float = 2**32, |
|
max_norm: float = 0.0, |
|
norm_type: float = 2.0, |
|
tp_size: int = 1, |
|
extra_dp_size: int = 1, |
|
enable_all_optimization: bool = False, |
|
enable_fused_normalization: bool = False, |
|
enable_flash_attention: bool = False, |
|
enable_sequence_parallelism: bool = False, |
|
enable_jit_fused: bool = False, |
|
enable_sequence_overlap: bool = False, |
|
enable_async_reduce: bool = True, |
|
verbose: bool = False, |
|
) -> None: |
|
super().__init__() |
|
assert precision in SUPPORTED_PRECISION, f"precision {precision} is not supported" |
|
if get_accelerator().name == "npu": |
|
assert placement_policy == "static", "NPU only supports static placement policy" |
|
if enable_async_reduce and not pin_memory: |
|
logging.warning( |
|
f"enable_async_reduce sets pin_memory=True to achieve best performance, which is not implicitly set." |
|
) |
|
pin_memory = True |
|
self.gemini_config = dict( |
|
chunk_config_dict=chunk_config_dict, |
|
chunk_init_device=(chunk_init_device or get_accelerator().get_current_device()), |
|
placement_policy=placement_policy, |
|
enable_gradient_accumulation=enable_gradient_accumulation, |
|
shard_param_frac=shard_param_frac, |
|
offload_optim_frac=offload_optim_frac, |
|
offload_param_frac=offload_param_frac, |
|
warmup_non_model_data_ratio=warmup_non_model_data_ratio, |
|
steady_cuda_cap_ratio=steady_cuda_cap_ratio, |
|
pin_memory=pin_memory, |
|
force_outputs_fp32=force_outputs_fp32, |
|
strict_ddp_mode=strict_ddp_mode, |
|
search_range_m=search_range_m, |
|
hidden_dim=hidden_dim, |
|
min_chunk_size_m=min_chunk_size_m, |
|
memstats=memstats, |
|
mixed_precision=PRECISION_STR_TO_DTYPE[precision], |
|
master_weights=master_weights, |
|
max_prefetch=max_prefetch, |
|
enable_async_reduce=enable_async_reduce, |
|
) |
|
self.zero_optim_config = dict( |
|
gpu_margin_mem_ratio=gpu_margin_mem_ratio, |
|
) |
|
self.optim_kwargs = dict( |
|
initial_scale=initial_scale, |
|
growth_factor=growth_factor, |
|
backoff_factor=backoff_factor, |
|
growth_interval=growth_interval, |
|
hysteresis=hysteresis, |
|
min_scale=min_scale, |
|
max_scale=max_scale, |
|
max_norm=max_norm, |
|
norm_type=norm_type, |
|
) |
|
self.enable_tensor_parallelism = tp_size > 1 |
|
self.enable_all_optimization = enable_all_optimization |
|
self.enable_fused_normalization = enable_fused_normalization |
|
self.enable_flash_attention = enable_flash_attention |
|
self.enable_sequence_parallelism = enable_sequence_parallelism if self.enable_tensor_parallelism else False |
|
self.enable_jit_fused = enable_jit_fused |
|
self.enable_sequence_overlap = enable_sequence_overlap |
|
self.verbose = verbose |
|
|
|
self.tp_size = tp_size |
|
self.extra_dp_size = extra_dp_size |
|
world_size = dist.get_world_size() |
|
self.zero_size = world_size // (self.tp_size * self.extra_dp_size) |
|
assert ( |
|
world_size == (self.tp_size * self.extra_dp_size) * self.zero_size |
|
), f"The global group size can't be evenly divided by the subgroup size." |
|
|
|
self.pg_mesh = ProcessGroupMesh(self.zero_size, self.extra_dp_size, self.tp_size) |
|
self.zero_group = ( |
|
self.pg_mesh.get_group_along_axis(ZERO_AXIS) if self.zero_size < world_size else _get_default_group() |
|
) |
|
self.extra_dp_group = self.pg_mesh.get_group_along_axis(DP_AXIS) if self.extra_dp_size > 1 else None |
|
self.tp_group = self.pg_mesh.get_group_along_axis(TP_AXIS) if self.tp_size > 1 else None |
|
self.dp_size = self.zero_size * self.extra_dp_size |
|
|
|
self.shard_config = ShardConfig( |
|
tensor_parallel_process_group=self.tp_group, |
|
enable_tensor_parallelism=self.enable_tensor_parallelism, |
|
enable_all_optimization=self.enable_all_optimization, |
|
enable_fused_normalization=self.enable_fused_normalization, |
|
enable_flash_attention=self.enable_flash_attention, |
|
enable_jit_fused=self.enable_jit_fused, |
|
enable_sequence_parallelism=self.enable_sequence_parallelism, |
|
enable_sequence_overlap=self.enable_sequence_overlap, |
|
) |
|
|
|
def __del__(self): |
|
"""Destroy the process groups in ProcessGroupMesh""" |
|
self.pg_mesh.destroy_mesh_process_groups() |
|
|
|
def support_no_sync(self) -> bool: |
|
return False |
|
|
|
def support_lora(self) -> bool: |
|
return False |
|
|
|
def control_precision(self) -> bool: |
|
return True |
|
|
|
def supported_precisions(self) -> List[str]: |
|
return SUPPORTED_PRECISION |
|
|
|
def control_device(self) -> bool: |
|
return True |
|
|
|
def supported_devices(self) -> List[str]: |
|
return ["cuda", "npu"] |
|
|
|
def prepare_dataloader( |
|
self, |
|
dataset, |
|
batch_size, |
|
shuffle=False, |
|
seed=1024, |
|
drop_last=False, |
|
pin_memory=False, |
|
num_workers=0, |
|
distributed_sampler_cls=None, |
|
**kwargs, |
|
): |
|
r""" |
|
Prepare a dataloader for distributed training. The dataloader will be wrapped by |
|
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`. |
|
|
|
|
|
Args: |
|
dataset (`torch.utils.data.Dataset`): The dataset to be loaded. |
|
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False. |
|
seed (int, optional): Random worker seed for sampling, defaults to 1024. |
|
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True. |
|
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size |
|
is not divisible by the batch size. If False and the size of dataset is not divisible by |
|
the batch size, then the last batch will be smaller, defaults to False. |
|
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False. |
|
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0. |
|
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in |
|
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_. |
|
|
|
Returns: |
|
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing. |
|
""" |
|
_kwargs = kwargs.copy() |
|
zero_world_size = self.pg_mesh.size(ZERO_AXIS) |
|
extra_dp_world_size = self.pg_mesh.size(DP_AXIS) |
|
zero_rank = self.pg_mesh.coordinate(ZERO_AXIS) |
|
extra_dp_rank = self.pg_mesh.coordinate(DP_AXIS) |
|
distributed_sampler_cls = distributed_sampler_cls or DistributedSampler |
|
sampler = distributed_sampler_cls( |
|
dataset, |
|
num_replicas=zero_world_size * extra_dp_world_size, |
|
rank=zero_rank * extra_dp_world_size + extra_dp_rank, |
|
shuffle=shuffle, |
|
) |
|
|
|
# Deterministic dataloader |
|
def seed_worker(worker_id): |
|
worker_seed = seed |
|
np.random.seed(worker_seed) |
|
torch.manual_seed(worker_seed) |
|
random.seed(worker_seed) |
|
|
|
return DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
sampler=sampler, |
|
worker_init_fn=seed_worker, |
|
drop_last=drop_last, |
|
pin_memory=pin_memory, |
|
num_workers=num_workers, |
|
**_kwargs, |
|
) |
|
|
|
def configure( |
|
self, |
|
model: nn.Module, |
|
optimizer: Optional[Optimizer] = None, |
|
criterion: Optional[Callable] = None, |
|
dataloader: Optional[DataLoader] = None, |
|
lr_scheduler: Optional[LRScheduler] = None, |
|
) -> Tuple[nn.Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]: |
|
params_info = get_param_info(optimizer) |
|
if not isinstance(model, ModelWrapper): |
|
# convert model to sync bn |
|
# FIXME(ver217): gemini does not support sync bn |
|
# In torch/nn/modules/_functions.py, line 22, ``mean, invstd = torch.batch_norm_stats(input, eps)`` will get fp32 mean and invstd even though the input is fp16. |
|
# This inconsistency of dtype will cause the error. |
|
# We have two possible solutions: |
|
# 1. keep batch norm always in fp32. This is hard for gemini, as it use chunks. |
|
# 2. patch sync bn or write a new on. This is relatively easy, but we need to test it. |
|
# model = nn.SyncBatchNorm.convert_sync_batchnorm(model, None) |
|
|
|
# wrap the model with Gemini |
|
if self.enable_tensor_parallelism: |
|
shardformer = ShardFormer(self.shard_config) |
|
model, _ = shardformer.optimize(model) |
|
|
|
model = GeminiDDP( |
|
model, |
|
**self.gemini_config, |
|
zero_group=self.zero_group, |
|
extra_dp_group=self.extra_dp_group, |
|
verbose=self.verbose, |
|
) |
|
|
|
if optimizer is not None and not isinstance(optimizer, OptimizerWrapper): |
|
optimizer = GeminiOptimizer( |
|
optimizer, |
|
model, |
|
**self.zero_optim_config, |
|
**self.optim_kwargs, |
|
tp_group=self.tp_group, |
|
params_info=params_info, |
|
verbose=self.verbose, |
|
) |
|
|
|
return model, optimizer, criterion, dataloader, lr_scheduler |
|
|
|
def control_checkpoint_io(self) -> bool: |
|
return True |
|
|
|
def get_checkpoint_io(self) -> CheckpointIO: |
|
return GeminiCheckpointIO() |
|
|
|
def no_sync(self, model: nn.Module, optimizer: OptimizerWrapper) -> Iterator[None]: |
|
raise NotImplementedError |
|
|
|
def enable_lora( |
|
self, model: nn.Module, pretrained_dir: Optional[str] = None, lora_config: Optional[Dict] = None |
|
) -> nn.Module: |
|
raise NotImplementedError
|
|
|