mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
56 lines
2.1 KiB
56 lines
2.1 KiB
from typing import Optional |
|
|
|
|
|
class TensorParallelEnv(object): |
|
_instance = None |
|
|
|
def __new__(cls, *args, **kwargs): |
|
if cls._instance is None: |
|
cls._instance = object.__new__(cls, *args, **kwargs) |
|
return cls._instance |
|
|
|
def __init__(self, *args, **kwargs): |
|
self.load(*args, **kwargs) |
|
|
|
def load(self, |
|
mode: Optional[str] = None, |
|
vocab_parallel: bool = False, |
|
parallel_input_1d: bool = False, |
|
summa_dim: int = None, |
|
tesseract_dim: int = None, |
|
tesseract_dep: int = None, |
|
depth_3d: int = None, |
|
input_group_3d=None, |
|
weight_group_3d=None, |
|
output_group_3d=None, |
|
input_x_weight_group_3d=None, |
|
output_x_weight_group_3d=None): |
|
self.mode = mode |
|
self.vocab_parallel = vocab_parallel |
|
self.parallel_input_1d = parallel_input_1d |
|
self.summa_dim = summa_dim |
|
self.tesseract_dim = tesseract_dim |
|
self.tesseract_dep = tesseract_dep |
|
self.depth_3d = depth_3d |
|
self.input_group_3d = input_group_3d |
|
self.weight_group_3d = weight_group_3d |
|
self.output_group_3d = output_group_3d |
|
self.input_x_weight_group_3d = input_x_weight_group_3d |
|
self.output_x_weight_group_3d = output_x_weight_group_3d |
|
|
|
def save(self): |
|
return dict(mode=self.mode, |
|
vocab_parallel=self.vocab_parallel, |
|
parallel_input_1d=self.parallel_input_1d, |
|
summa_dim=self.summa_dim, |
|
tesseract_dim=self.tesseract_dim, |
|
tesseract_dep=self.tesseract_dep, |
|
depth_3d=self.depth_3d, |
|
input_group_3d=self.input_group_3d, |
|
weight_group_3d=self.weight_group_3d, |
|
output_group_3d=self.output_group_3d, |
|
input_x_weight_group_3d=self.input_x_weight_group_3d, |
|
output_x_weight_group_3d=self.output_x_weight_group_3d) |
|
|
|
|
|
tensor_parallel_env = TensorParallelEnv()
|
|
|