mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
5.1 KiB
113 lines
5.1 KiB
from typing import Dict |
|
|
|
import torch |
|
from torch.fx import GraphModule |
|
from torch.fx.node import Node |
|
|
|
from colossalai.auto_parallel.meta_profiler import ShardMetaInfo |
|
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply, runtime_comm_spec_apply |
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, TrainCycleItem |
|
from colossalai.tensor.comm_spec import CommSpec |
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager |
|
from colossalai.tensor.sharding_spec import ShardingSpec |
|
|
|
shape_consistency_manager = ShapeConsistencyManager() |
|
|
|
|
|
def _construct_shard_meta_info(node: Node, origin_sharding_spec: ShardingSpec, |
|
target_sharding_spec: ShardingSpec) -> ShardMetaInfo: |
|
# get comm_action_sequence and total_cost from shape_consistency_manager |
|
_, comm_action_sequence, total_cost = shape_consistency_manager.shape_consistency( |
|
origin_sharding_spec, target_sharding_spec) |
|
|
|
meta_info = ShardMetaInfo() |
|
# NOTE: the cost in shape_consistency_manager.mem_cost is the count in number of numel |
|
# get mem cost for ShardMetaInfo |
|
mem_cost = shape_consistency_manager.mem_cost(comm_action_sequence) |
|
# extract user that has _meta_data and extract element length |
|
input_node = next(n for n in node._input_nodes if hasattr(n, '_meta_data')) |
|
element_length = input_node._meta_data.element_size() |
|
|
|
mem_cost.fwd.activation *= element_length |
|
mem_cost.fwd.temp *= element_length |
|
mem_cost.bwd.activation *= element_length |
|
mem_cost.bwd.temp *= element_length |
|
mem_cost.total.activation *= element_length |
|
|
|
meta_info.memory_cost = mem_cost |
|
|
|
# get computation cost for ShardMetaInfo |
|
meta_info.compute_cost = TrainCycleItem(total_cost['forward'] * element_length, |
|
total_cost['backward'] * element_length, |
|
total_cost['total'] * element_length) |
|
|
|
# get tensor shape for ShardMetaInfo |
|
origin_sharding_spec: ShardingSpec |
|
target_sharding_spec: ShardingSpec |
|
input_shape = origin_sharding_spec.get_sharded_shape_per_device() |
|
output_shape = target_sharding_spec.get_sharded_shape_per_device() |
|
|
|
meta_info.fwd_in = [torch.rand(input_shape, device='meta')] |
|
meta_info.fwd_buffer = [] |
|
meta_info.fwd_out = [torch.rand(output_shape, device='meta')] |
|
|
|
return meta_info |
|
|
|
|
|
def _runtime_apply_meta_info(node: Node, origin_spec_dict, sharding_spec_dict) -> ShardMetaInfo: |
|
""" |
|
This method is used to construct `MetaInto` for shape consistency node |
|
""" |
|
|
|
# extract node index and user node index |
|
args = node.args |
|
node_index, user_node_index = args[3], args[4] |
|
origin_sharding_spec, target_sharding_spec = origin_spec_dict[node_index], sharding_spec_dict[node_index][ |
|
user_node_index] |
|
|
|
return _construct_shard_meta_info(node, origin_sharding_spec, target_sharding_spec) |
|
|
|
|
|
def _runtime_comm_spec_apply_meta_info(node: Node, comm_actions_dict: Dict) -> ShardMetaInfo: |
|
# extract node_index and op_data_name |
|
node_index, op_data_name = node.args[2], node.args[3] |
|
|
|
comm_action = comm_actions_dict[node_index][op_data_name] |
|
if isinstance(comm_action.comm_spec, CommSpec): |
|
# this case is for all_reduce, there will be no memory cost |
|
meta_info = ShardMetaInfo() |
|
meta_info.memory_cost = TrainCycleItem(MemoryCost(), MemoryCost(), MemoryCost) |
|
output_node = next(n for n in node.users if hasattr(n, '_meta_data')) |
|
element_length = output_node._meta_data.element_size() |
|
|
|
total_cost = comm_action.comm_spec.get_comm_cost() |
|
meta_info.compute_cost = TrainCycleItem(total_cost['forward'] * element_length, |
|
total_cost['backward'] * element_length, |
|
total_cost['total'] * element_length) |
|
|
|
input_shape = output_shape = comm_action.comm_spec.sharding_spec.get_sharded_shape_per_device() |
|
meta_info.fwd_in = [torch.rand(input_shape, device='meta')] |
|
meta_info.fwd_buffer = [] |
|
meta_info.fwd_out = [torch.rand(output_shape, device='meta')] |
|
else: |
|
# this case will be handled by shape consistency manager |
|
origin_sharding_spec, target_sharding_spec = comm_action.comm_spec['src_spec'], comm_action.comm_spec[ |
|
'tgt_spec'] |
|
meta_info = _construct_shard_meta_info(node, origin_sharding_spec, target_sharding_spec) |
|
|
|
return meta_info |
|
|
|
|
|
def comm_metainfo_pass(gm: GraphModule, sharding_spec_dict: Dict, origin_spec_dict: Dict, |
|
comm_actions_dict: Dict) -> GraphModule: |
|
""" |
|
The method manages all the metainfo of the communication node (run_time_apply, runtime_comm_spec_apply) in the graph. |
|
""" |
|
for node in gm.graph.nodes: |
|
if node.target == runtime_apply: |
|
setattr(node, 'best_strategy_info', _runtime_apply_meta_info(node, origin_spec_dict, sharding_spec_dict)) |
|
elif node.target == runtime_comm_spec_apply: |
|
setattr(node, 'best_strategy_info', _runtime_comm_spec_apply_meta_info(node, comm_actions_dict)) |
|
else: |
|
pass |
|
return gm
|
|
|