mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1191 lines
54 KiB
1191 lines
54 KiB
import logging |
|
import random |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.modeling_attn_mask_utils import ( |
|
_prepare_4d_causal_attention_mask, |
|
_prepare_4d_causal_attention_mask_for_sdpa, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
Seq2SeqLMOutput, |
|
Seq2SeqModelOutput, |
|
SequenceClassifierOutput, |
|
) |
|
from transformers.models.whisper.modeling_whisper import ( |
|
_HIDDEN_STATES_START_POSITION, |
|
WhisperDecoder, |
|
WhisperEncoder, |
|
WhisperForAudioClassification, |
|
WhisperForConditionalGeneration, |
|
WhisperModel, |
|
shift_tokens_right, |
|
) |
|
from transformers.utils import logging |
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.shardformer.layer import ColoAttention |
|
from colossalai.shardformer.shard import ShardConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _get_attention_mask( |
|
self: WhisperDecoder, |
|
shard_config: ShardConfig, |
|
hidden_states: torch.Tensor, |
|
past_key_values_length: int, |
|
attention_mask: Optional[torch.FloatTensor], |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
): |
|
batch_size, seq_length = hidden_states.shape[:2] |
|
mask_seq_length = past_key_values_length + seq_length |
|
if shard_config.enable_flash_attention: |
|
attention_mask = ColoAttention.prepare_attn_kwargs( |
|
(batch_size, 1, seq_length, mask_seq_length), |
|
hidden_states.dtype, |
|
hidden_states.device, |
|
attention_mask, |
|
is_causal=True, |
|
) |
|
else: |
|
input_shape = (batch_size, seq_length) |
|
if self._use_flash_attention_2: |
|
# 2d mask is passed through the layers |
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._use_sdpa and head_mask is None and not output_attentions: |
|
# output_attentions=True & head_mask can not be supported when using SDPA. |
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, input_shape, hidden_states, past_key_values_length |
|
) |
|
else: |
|
# 4d mask is passed through the layers |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, input_shape, hidden_states, past_key_values_length |
|
) |
|
return attention_mask |
|
|
|
|
|
def get_whisper_flash_attention_forward(): |
|
from transformers.models.whisper.modeling_whisper import WhisperAttention |
|
|
|
def forward( |
|
self: WhisperAttention, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[dict] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
assert layer_head_mask is None, "layer_head_mask is not supported for FlashAttention" |
|
# for encoder, attention_mask is None |
|
if attention_mask is None: |
|
attention_mask = {} |
|
# if key_value_states are provided this layer is used as a cross-attention layer |
|
# for the decoder |
|
is_cross_attention = key_value_states is not None |
|
|
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
# get query proj |
|
query_states = self.q_proj(hidden_states) |
|
# get key, value proj |
|
# `past_key_value[0].shape[2] == key_value_states.shape[1]` |
|
# is checking that the `sequence_length` of the `past_key_value` is the same as |
|
# the provided `key_value_states` to support prefix tuning |
|
if ( |
|
is_cross_attention |
|
and past_key_value is not None |
|
and past_key_value[0].shape[2] == key_value_states.shape[1] |
|
): |
|
# reuse k,v, cross_attentions |
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
elif is_cross_attention: |
|
# cross_attentions |
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) |
|
elif past_key_value is not None: |
|
# reuse k, v, self_attention |
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
else: |
|
# self_attention |
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
if self.is_decoder: |
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. |
|
# Further calls to cross_attention layer can then reuse all cross-attention |
|
# key/value_states (first "if" case) |
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of |
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention |
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) |
|
# if encoder bi-directional self-attention `past_key_value` is always `None` |
|
past_key_value = (key_states, value_states) |
|
|
|
query_states = self._shape(query_states, tgt_len, bsz) |
|
|
|
dropout_p = self.dropout if self.training else 0.0 |
|
attn_output = ColoAttention.attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
**attention_mask, |
|
dropout_p=dropout_p, |
|
scale=self.scaling, |
|
) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be |
|
# partitioned across GPUs when using tensor-parallelism. |
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
return forward |
|
|
|
|
|
def get_whisper_decoder_forward_for_flash_attention(shard_config: ShardConfig): |
|
def forward( |
|
self: WhisperDecoder, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
position_ids=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
# retrieve input_ids and inputs_embeds |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
# past_key_values_length |
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
attention_mask = _get_attention_mask(self, shard_config, inputs_embeds, past_key_values_length, attention_mask) |
|
|
|
# embed positions |
|
if input_ids is not None: |
|
positions = self.embed_positions( |
|
input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids |
|
) |
|
else: |
|
positions = self.embed_positions( |
|
inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids |
|
) |
|
|
|
hidden_states = inputs_embeds + positions |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." |
|
) |
|
use_cache = False |
|
# decoder layers |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired |
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): |
|
if attn_mask is not None: |
|
assert attn_mask.size()[0] == (len(self.layers)), ( |
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" |
|
f" {head_mask.size()[0]}." |
|
) |
|
for idx, decoder_layer in enumerate(self.layers): |
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
if self.training: |
|
dropout_probability = torch.rand([]) |
|
if dropout_probability < self.layerdrop: |
|
continue |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
# None for past_key_value |
|
return module(*inputs, output_attentions, use_cache) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
None, # encoder attention mask |
|
head_mask[idx] if head_mask is not None else None, |
|
(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), |
|
None, # past_key_value |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
cross_attn_layer_head_mask=( |
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None |
|
), |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if encoder_hidden_states is not None: |
|
all_cross_attentions += (layer_outputs[2],) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
# add hidden states from the last decoder layer |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_cache, |
|
all_hidden_states, |
|
all_self_attns, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_whisper_encoder_layer_forward(): |
|
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer |
|
|
|
def forward( |
|
self: WhisperEncoderLayer, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_head_mask: torch.Tensor, |
|
output_attentions: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size |
|
`(encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
hidden_states, attn_weights, _ = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training) |
|
|
|
residual = hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training) |
|
|
|
if hidden_states.dtype == torch.float16 and ( |
|
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() |
|
): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_whisper_decoder_layer_forward(): |
|
from transformers.models.whisper.modeling_whisper import WhisperDecoderLayer |
|
|
|
def forward( |
|
self: WhisperDecoderLayer, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = True, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
encoder_hidden_states (`torch.FloatTensor`): |
|
cross attention input to the layer of shape `(batch, seq_len, embed_dim)` |
|
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size |
|
`(encoder_attention_heads,)`. |
|
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of |
|
size `(decoder_attention_heads,)`. |
|
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
|
|
# Self Attention |
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 |
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
# add present self-attn cache to positions 1,2 of present_key_value tuple |
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
past_key_value=self_attn_past_key_value, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training) |
|
|
|
# Cross-Attention Block |
|
cross_attn_present_key_value = None |
|
cross_attn_weights = None |
|
if encoder_hidden_states is not None: |
|
residual = hidden_states |
|
hidden_states = self.encoder_attn_layer_norm(hidden_states) |
|
|
|
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple |
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( |
|
hidden_states=hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training) |
|
|
|
# add cross-attn to positions 3,4 of present_key_value tuple |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
# Fully Connected |
|
residual = hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = self.dropout_add(hidden_states, residual, self.dropout, self.training) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights, cross_attn_weights) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
return forward |
|
|
|
|
|
class WhisperPipelineForwards: |
|
""" |
|
This class serves as a micro library for forward function substitution of Llama models |
|
under pipeline setting. |
|
""" |
|
|
|
@staticmethod |
|
def whisper_encoder_forward( |
|
self: WhisperEncoder, |
|
input_features, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_states=None, |
|
all_attentions=None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
shard_config: Optional[ShardConfig] = None, |
|
): |
|
r""" |
|
Args: |
|
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): |
|
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be |
|
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a |
|
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into |
|
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding |
|
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] |
|
attention_mask (`torch.Tensor`)`, *optional*): |
|
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, |
|
but it is not used. By default the silence in the input log mel spectrogram are ignored. |
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
logging.get_logger(__name__) |
|
|
|
stage = stage_manager.stage |
|
at_first_stage = stage == 0 |
|
at_last_stage = stage == decoder_starting_stage - 1 |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
# Process inputs if at the first stage of encoder. |
|
if at_first_stage: |
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) |
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) |
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1) |
|
embed_pos = self.embed_positions.weight |
|
|
|
hidden_states = inputs_embeds + embed_pos |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
# check if head_mask has a correct number of layers specified if desired |
|
if head_mask is not None: |
|
assert head_mask.size()[0] == ( |
|
len(self.layers) |
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." |
|
|
|
else: |
|
if hidden_states is None: |
|
raise ValueError( |
|
"hidden_states shouldn't be None for stages other than the first stage of encoder/decoder." |
|
) |
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
|
|
for idx in range(start_idx, end_idx): |
|
encoder_layer = self.layers[idx] |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) |
|
dropout_probability = random.uniform(0, 1) |
|
if self.training and (dropout_probability < self.layerdrop): # skip the layer |
|
layer_outputs = (None, None) |
|
else: |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
encoder_layer.__call__, |
|
hidden_states, |
|
None, |
|
(head_mask[idx] if head_mask is not None else None), |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
None, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if at_last_stage: |
|
hidden_states = self.layer_norm(hidden_states) |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
else: |
|
return {"hidden_states": hidden_states, "head_mask": head_mask} |
|
|
|
@staticmethod |
|
def whisper_decoder_forward( |
|
self: WhisperDecoder, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
position_ids=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
shard_config: Optional[ShardConfig] = None, |
|
): |
|
r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
provide it. |
|
|
|
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention |
|
of the decoder. |
|
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention |
|
on hidden heads. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of |
|
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the |
|
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those |
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of |
|
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of |
|
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing |
|
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more |
|
control over how to convert `input_ids` indices into associated vectors than the model's internal |
|
embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
logger = logging.get_logger(__name__) |
|
stage = stage_manager.stage |
|
at_first_stage = stage == decoder_starting_stage |
|
at_last_stage = stage == stage_manager.num_stages - 1 |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
# decoder layers |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired |
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): |
|
if attn_mask is not None: |
|
assert attn_mask.size()[0] == (len(self.layers)), ( |
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" |
|
f" {head_mask.size()[0]}." |
|
) |
|
|
|
# past_key_values_length |
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if at_first_stage: |
|
# retrieve input_ids and inputs_embeds |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
attention_mask = _get_attention_mask( |
|
self, shard_config, inputs_embeds, past_key_values_length, attention_mask |
|
) |
|
|
|
# embed positions |
|
if input_ids is not None: |
|
positions = self.embed_positions( |
|
input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids |
|
) |
|
else: |
|
positions = self.embed_positions( |
|
inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids |
|
) |
|
|
|
hidden_states = inputs_embeds + positions |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." |
|
) |
|
use_cache = False |
|
|
|
else: |
|
if hidden_states is None: |
|
raise ValueError( |
|
"hidden_states shouldn't be None for stages other than the first stage of encoder/decoder." |
|
) |
|
input_shape = hidden_states.size()[:-1] |
|
attention_mask = _get_attention_mask( |
|
self, |
|
shard_config, |
|
hidden_states, |
|
past_key_values_length, |
|
attention_mask, |
|
) |
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
|
|
for idx in range(start_idx, end_idx): |
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) |
|
decoder_layer = self.layers[idx] |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
dropout_probability = random.uniform(0, 1) |
|
if self.training and (dropout_probability < self.layerdrop): |
|
continue |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
None, # encoder attention mask |
|
head_mask[idx] if head_mask is not None else None, |
|
(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), |
|
None, # past_key_value |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
cross_attn_layer_head_mask=( |
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None |
|
), |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if encoder_hidden_states is not None: |
|
all_cross_attentions += (layer_outputs[2],) |
|
|
|
if at_last_stage: |
|
hidden_states = self.layer_norm(hidden_states) |
|
# add hidden states from the last decoder layer |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_cache, |
|
all_hidden_states, |
|
all_self_attns, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
else: |
|
return { |
|
"head_mask": head_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
"hidden_states": hidden_states, |
|
} |
|
|
|
@staticmethod |
|
def whisper_model_forward( |
|
self: WhisperModel, |
|
input_features: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
decoder_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, |
|
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
shard_config: Optional[ShardConfig] = None, |
|
): |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoFeatureExtractor, WhisperModel |
|
>>> from datasets import load_dataset |
|
|
|
>>> model = WhisperModel.from_pretrained("openai/whisper-base") |
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") |
|
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") |
|
>>> input_features = inputs.input_features |
|
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id |
|
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state |
|
>>> list(last_hidden_state.shape) |
|
[1, 2, 512] |
|
```""" |
|
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if past_key_values: |
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.") |
|
past_key_values = None |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
|
|
logging.get_logger(__name__) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
in_decoder = stage_manager.stage >= decoder_starting_stage |
|
if not in_decoder: |
|
if encoder_outputs is None: |
|
input_features = self._mask_input_features(input_features, attention_mask=attention_mask) |
|
|
|
encoder_outputs = WhisperPipelineForwards.whisper_encoder_forward( |
|
self.encoder, |
|
input_features, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
) |
|
|
|
if stage_manager.stage == decoder_starting_stage - 1: |
|
# last stage of encoder |
|
return {"encoder_hidden_states": encoder_outputs[0]} |
|
else: |
|
return encoder_outputs |
|
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=(encoder_outputs[1] if len(encoder_outputs) > 1 else None), |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
at_last_decoder_stage = stage_manager.is_last_stage() |
|
at_first_decoder_stage = stage_manager.stage == decoder_starting_stage |
|
if encoder_outputs is not None: |
|
encoder_hidden_states = encoder_outputs[0] |
|
elif encoder_hidden_states is None: |
|
raise ValueError("Non-empty encoder_hidden_states should be passed in at decoder stages.") |
|
|
|
if not at_first_decoder_stage and hidden_states is None: |
|
raise ValueError("If not at the first layer of decoder, non-empty hidden_states must be provided.") |
|
|
|
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) |
|
decoder_outputs = WhisperPipelineForwards.whisper_decoder_forward( |
|
self.decoder, |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=decoder_inputs_embeds, |
|
position_ids=decoder_position_ids, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
shard_config=shard_config, |
|
) |
|
|
|
# Directly return outputs of overloaded Whisper forward if not at last stage. |
|
if not at_last_decoder_stage: |
|
# encoder_hidden_states should be passed to the next stage |
|
decoder_outputs["encoder_hidden_states"] = encoder_hidden_states |
|
return decoder_outputs |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_hidden_states, |
|
) |
|
|
|
@staticmethod |
|
def whisper_for_conditional_generation_forward( |
|
self: WhisperForConditionalGeneration, |
|
input_features: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
decoder_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, |
|
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
shard_config: Optional[ShardConfig] = None, |
|
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` |
|
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is |
|
only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration |
|
>>> from datasets import load_dataset |
|
|
|
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") |
|
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") |
|
|
|
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
|
|
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") |
|
>>> input_features = inputs.input_features |
|
|
|
>>> generated_ids = model.generate(inputs=input_features) |
|
|
|
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
>>> transcription |
|
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if labels is not None: |
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
decoder_input_ids = shift_tokens_right( |
|
labels, self.config.pad_token_id, self.config.decoder_start_token_id |
|
) |
|
in_decoder = stage_manager.stage >= decoder_starting_stage |
|
at_last_decoder_stage = stage_manager.is_last_stage() |
|
outputs = WhisperPipelineForwards.whisper_model_forward( |
|
self.model, |
|
input_features, |
|
attention_mask=attention_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
encoder_outputs=encoder_outputs, |
|
decoder_attention_mask=decoder_attention_mask, |
|
head_mask=head_mask, |
|
decoder_head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
decoder_position_ids=decoder_position_ids, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
shard_config=shard_config, |
|
) |
|
if not in_decoder: |
|
return outputs |
|
|
|
if not at_last_decoder_stage: |
|
# encoder_hidden_states should be passed to the next stage |
|
outputs["encoder_hidden_states"] = encoder_hidden_states |
|
return outputs |
|
|
|
lm_logits = self.proj_out(outputs[0]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
# move labels to correct device to enable PP |
|
labels = labels.to(lm_logits.device) |
|
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
decoder_hidden_states=outputs.decoder_hidden_states, |
|
decoder_attentions=outputs.decoder_attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state, |
|
encoder_hidden_states=outputs.encoder_hidden_states, |
|
encoder_attentions=outputs.encoder_attentions, |
|
) |
|
|
|
@staticmethod |
|
def whisper_for_audio_classification_forward( |
|
self: WhisperForAudioClassification, |
|
input_features: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_states=None, |
|
all_attentions=None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
shard_config: Optional[ShardConfig] = None, |
|
): |
|
r""" |
|
This function is modified on the basis of transformers.models.whisper.modeling_whisper.WhisperForAudioClassification.forward. |
|
Please refer to original code of transformers for more details. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
if self.config.use_weighted_layer_sum: |
|
output_hidden_states = True |
|
elif output_hidden_states is None: |
|
output_hidden_states = self.config.output_hidden_states |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
# audio_classification only holds encoder |
|
encoder_outputs = WhisperPipelineForwards.whisper_encoder_forward( |
|
self.encoder, |
|
input_features, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
) |
|
|
|
if not stage_manager.is_last_stage(): |
|
return encoder_outputs |
|
|
|
if self.config.use_weighted_layer_sum: |
|
hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION] |
|
hidden_states = torch.stack(hidden_states, dim=1) |
|
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) |
|
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) |
|
else: |
|
hidden_states = encoder_outputs[0] |
|
|
|
hidden_states = self.projector(hidden_states) |
|
pooled_output = hidden_states.mean(dim=1) |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
# move labels to correct device to enable PP |
|
labels = labels.to(logits.device) |
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + encoder_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
)
|
|
|