mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
857 lines
39 KiB
857 lines
39 KiB
import warnings |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
Seq2SeqLMOutput, |
|
Seq2SeqModelOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.models.t5.modeling_t5 import ( |
|
T5EncoderModel, |
|
T5ForConditionalGeneration, |
|
T5ForTokenClassification, |
|
T5Model, |
|
T5Stack, |
|
) |
|
from transformers.utils import logging |
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
|
|
|
|
class T5PipelineForwards: |
|
""" |
|
This class serves as a micro library for forward function substitution of |
|
T5 models under pipeline setting. |
|
""" |
|
|
|
@staticmethod |
|
def t5_stack_forward( |
|
self: T5Stack, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
position_bias: Optional[torch.Tensor] = None, |
|
encoder_decoder_position_bias: Optional[torch.Tensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
) -> Union[Dict, Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
# This function is modified on the basis of transformers.models.t5.modeling_t5.T5Stack.forward. |
|
# Please refer to original code of transformers for more details. |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
# TODO(baizhou): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if past_key_values: |
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.") |
|
past_key_values = None |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
if use_cache is True: |
|
if not in_decoder: |
|
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") |
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
stage = stage_manager.stage |
|
in_decoder = self.is_decoder |
|
if in_decoder != (stage >= decoder_starting_stage): |
|
raise ValueError("Config in T5Stack is not aligned with pipeline setting.") |
|
|
|
# at_first_stage: current stage is the first stage of encoder/decoder, taking input_ids/input_embeds |
|
# at_last_stage: current stage is the last stage of encoder/decoder, making outputs the same form as huggingface |
|
at_first_stage = (stage == 0) or (stage == decoder_starting_stage) |
|
at_last_stage = (stage == decoder_starting_stage - 1) or (stage == stage_manager.num_stages - 1) |
|
|
|
# Process inputs if at the first stage of encoder/decoder. |
|
if at_first_stage: |
|
if input_ids is not None and inputs_embeds is not None: |
|
err_msg_prefix = "decoder_" if in_decoder else "" |
|
raise ValueError( |
|
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
err_msg_prefix = "decoder_" if in_decoder else "" |
|
raise ValueError( |
|
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds" |
|
) |
|
if inputs_embeds is None: |
|
if self.embed_tokens is None: |
|
raise ValueError("You have to initialize the model with valid token embeddings") |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
batch_size, seq_length = input_shape |
|
device = inputs_embeds.device |
|
hidden_states = self.dropout(inputs_embeds) |
|
else: |
|
if hidden_states is None: |
|
raise ValueError( |
|
"hidden_states shouldn't be None for stages other than the first stage of encoder/decoder." |
|
) |
|
input_shape = hidden_states.size()[:-1] |
|
batch_size, seq_length = input_shape[0], input_shape[1] |
|
device = hidden_states.device |
|
|
|
# required mask seq length can be calculated via length of past |
|
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length |
|
|
|
# initialize past_key_values with `None` if past does not exist |
|
if past_key_values is None: |
|
past_key_values = [None] * len(self.block) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(batch_size, mask_seq_length, device=device) |
|
|
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] |
|
# ourselves in which case we just need to make it broadcastable to all heads. |
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
# If a 2D or 3D attention mask is provided for the cross-attention |
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
# Prepare head mask if needed |
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers) |
|
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) |
|
present_key_value_states = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None |
|
|
|
# Going through held blocks. |
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
|
|
for i in range(start_idx, end_idx): |
|
past_key_value = past_key_values[i] |
|
layer_module = self.block[i] |
|
layer_head_mask = head_mask[i] |
|
cross_attn_layer_head_mask = cross_attn_head_mask[i] |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.forward, |
|
hidden_states, |
|
extended_attention_mask, |
|
position_bias, |
|
encoder_hidden_states, |
|
encoder_extended_attention_mask, |
|
encoder_decoder_position_bias, |
|
layer_head_mask, |
|
cross_attn_layer_head_mask, |
|
None, # past_key_value is always None with gradient checkpointing |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
position_bias=position_bias, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=layer_head_mask, |
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
# layer_outputs is a tuple with: |
|
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) |
|
|
|
if use_cache is False or use_cache is None: |
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] |
|
hidden_states, present_key_value_state = layer_outputs[:2] |
|
|
|
# We share the position biases between the layers - the first layer store them |
|
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), |
|
# (cross-attention position bias), (cross-attention weights) |
|
position_bias = layer_outputs[2] |
|
|
|
if in_decoder and encoder_hidden_states is not None: |
|
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] |
|
# append next layer key value states |
|
if use_cache: |
|
present_key_value_states = present_key_value_states + (present_key_value_state,) |
|
|
|
# last layer |
|
if at_last_stage: |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
else: |
|
return { |
|
"hidden_states": hidden_states, |
|
"position_bias": position_bias, |
|
"encoder_decoder_position_bias": encoder_decoder_position_bias, |
|
"backward_tensor_keys": ["hidden_states"], |
|
} |
|
|
|
@staticmethod |
|
def t5_model_forward( |
|
self: T5Model, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
decoder_inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
position_bias: Optional[torch.Tensor] = None, |
|
encoder_decoder_position_bias: Optional[torch.Tensor] = None, |
|
backward_tensor_keys: Optional[List[str]] = None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: |
|
# This function is modified on the basis of transformers.models.t5.modeling_t5.T5Model.forward. |
|
# Please refer to original code of transformers for more details. |
|
|
|
__HEAD_MASK_WARNING_MSG = """ |
|
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, |
|
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. |
|
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, |
|
num_heads)`. |
|
""" |
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
# TODO(baizhou): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if past_key_values: |
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.") |
|
past_key_values = None |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
|
|
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask |
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
in_decoder = stage_manager.stage >= decoder_starting_stage |
|
# Stage is in encoder, directly return the output of t5_stack_forward |
|
if not in_decoder: |
|
encoder_outputs = T5PipelineForwards.t5_stack_forward( |
|
self.encoder, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
position_bias=position_bias, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
) |
|
if stage_manager.stage == decoder_starting_stage - 1: |
|
# last stage of encoder |
|
return {"encoder_hidden_states": encoder_outputs[0]} |
|
else: |
|
return encoder_outputs |
|
|
|
at_last_decoder_stage = stage_manager.is_last_stage() |
|
at_first_decoder_stage = stage_manager.stage == decoder_starting_stage |
|
|
|
if encoder_outputs is not None: |
|
encoder_hidden_states = encoder_outputs[0] |
|
elif encoder_hidden_states is None: |
|
raise ValueError("Non-empty encoder_hidden_states should be passed in at decoder stages.") |
|
|
|
if not at_first_decoder_stage and hidden_states is None: |
|
raise ValueError("If not at the first layer of decoder, non-empty hidden_states must be provided.") |
|
|
|
# Decode |
|
decoder_outputs = T5PipelineForwards.t5_stack_forward( |
|
self.decoder, |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
position_bias=position_bias, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
) |
|
|
|
# Directly return outputs of overloaded T5Stack forward if not at last stage. |
|
if not at_last_decoder_stage: |
|
# encoder_hidden_states should be passed to the next stage |
|
decoder_outputs["encoder_hidden_states"] = encoder_hidden_states |
|
return decoder_outputs |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_hidden_states |
|
else: |
|
return Seq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_hidden_states, |
|
) |
|
|
|
@staticmethod |
|
def t5_for_conditional_generation_forward( |
|
self: T5ForConditionalGeneration, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
position_bias: Optional[torch.Tensor] = None, |
|
encoder_decoder_position_bias: Optional[torch.Tensor] = None, |
|
backward_tensor_keys: Optional[List[str]] = None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: |
|
# This function is modified on the basis of transformers.models.t5.modeling_t5.T5ForConditionalGeneration.forward. |
|
# Please refer to original code of transformers for more details. |
|
|
|
__HEAD_MASK_WARNING_MSG = """ |
|
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, |
|
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. |
|
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, |
|
num_heads)`. |
|
""" |
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
# TODO(baizhou): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if past_key_values: |
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.") |
|
past_key_values = None |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
|
|
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask |
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
in_decoder = stage_manager.stage >= decoder_starting_stage |
|
|
|
# Stage is in encoder, directly return the output of t5_stack_forward |
|
if not in_decoder: |
|
encoder_outputs = T5PipelineForwards.t5_stack_forward( |
|
self.encoder, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
position_bias=position_bias, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
) |
|
if stage_manager.stage == decoder_starting_stage - 1: |
|
# last stage of encoder |
|
return {"encoder_hidden_states": encoder_outputs[0]} |
|
else: |
|
return encoder_outputs |
|
|
|
at_last_decoder_stage = stage_manager.is_last_stage() |
|
at_first_decoder_stage = stage_manager.stage == decoder_starting_stage |
|
|
|
if encoder_outputs is not None: |
|
encoder_hidden_states = encoder_outputs[0] |
|
elif encoder_hidden_states is None: |
|
raise ValueError("Non-empty encoder_hidden_states should be passed in at decoder stages.") |
|
|
|
if not at_first_decoder_stage and hidden_states is None: |
|
raise ValueError("If not at the first layer of decoder, non-empty hidden_states must be provided.") |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
# get decoder inputs from shifting lm labels to the right |
|
decoder_input_ids = self._shift_right(labels) |
|
|
|
# Decode |
|
decoder_outputs = T5PipelineForwards.t5_stack_forward( |
|
self.decoder, |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
position_bias=position_bias, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
) |
|
|
|
# Directly return outputs of overloaded T5Stack forward if not at last stage. |
|
if not at_last_decoder_stage: |
|
# encoder_hidden_states should be passed to the next stage |
|
decoder_outputs["encoder_hidden_states"] = encoder_hidden_states |
|
return decoder_outputs |
|
|
|
sequence_output = decoder_outputs[0] |
|
|
|
if self.config.tie_word_embeddings: |
|
# Rescale output before projecting on vocab |
|
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 |
|
sequence_output = sequence_output * (self.model_dim**-0.5) |
|
|
|
lm_logits = self.lm_head(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
# move labels to correct device to enable PP |
|
labels = labels.to(lm_logits.device) |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_hidden_states |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_hidden_states, |
|
) |
|
|
|
@staticmethod |
|
def t5_encoder_model_forward( |
|
self: T5EncoderModel, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
position_bias: Optional[torch.Tensor] = None, |
|
encoder_decoder_position_bias: Optional[torch.Tensor] = None, |
|
backward_tensor_keys: Optional[List[str]] = None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: |
|
r""" |
|
This function is modified on the basis of transformers.models.t5.modeling_gpt2.T5EncoderModel.forward. |
|
Please refer to original code of transformers for more details. |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = T5PipelineForwards.t5_stack_forward( |
|
self.encoder, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
position_bias=position_bias, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
) |
|
|
|
return outputs |
|
|
|
@staticmethod |
|
def t5_for_token_classification_forward( |
|
self: T5ForTokenClassification, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
position_bias: Optional[torch.Tensor] = None, |
|
encoder_decoder_position_bias: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
backward_tensor_keys: Optional[List[str]] = None, |
|
stage_index: Optional[List[int]] = None, |
|
decoder_starting_stage: Optional[int] = None, |
|
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: |
|
r""" |
|
This function is modified on the basis of transformers.models.t5.modeling_t5.T5ForTokenClassification.forward. |
|
Please refer to original code of transformers for more details. |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = T5PipelineForwards.t5_stack_forward( |
|
self.transformer.encoder, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
position_bias=position_bias, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
stage_index=stage_index, |
|
decoder_starting_stage=decoder_starting_stage, |
|
) |
|
if stage_manager.is_last_stage(): |
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
return outputs |
|
|
|
|
|
def get_t5_flash_attention_forward(): |
|
from transformers.models.t5.modeling_t5 import T5Attention |
|
|
|
def forward( |
|
self: T5Attention, |
|
hidden_states: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
position_bias: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
query_length: Optional[int] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
# Input is (batch_size, seq_length, dim) |
|
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) |
|
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) |
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 2: |
|
raise ValueError( |
|
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
) |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
# self-attn |
|
# (batch_size, n_heads, seq_length, dim_per_head) |
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
# cross-attn |
|
# (batch_size, n_heads, seq_length, dim_per_head) |
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
# self-attn |
|
# (batch_size, n_heads, key_length, dim_per_head) |
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
elif past_key_value.shape[2] != key_value_states.shape[1]: |
|
# checking that the `sequence_length` of the `past_key_value` is the same as |
|
# the provided `key_value_states` to support prefix tuning |
|
# cross-attn |
|
# (batch_size, n_heads, seq_length, dim_per_head) |
|
hidden_states = shape(proj_layer(key_value_states)) |
|
else: |
|
# cross-attn |
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
# get query states |
|
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) |
|
|
|
# get key/value states |
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None |
|
) |
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None |
|
) |
|
|
|
if position_bias is None: |
|
if not self.has_relative_attention_bias: |
|
position_bias = torch.zeros( |
|
(1, self.n_heads, real_seq_length, key_length), device=query_states.device, dtype=query_states.dtype |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
position_bias.requires_grad = True |
|
else: |
|
position_bias = self.compute_bias(real_seq_length, key_length, device=query_states.device) |
|
|
|
# if key and values are already calculated |
|
# we want only the last query position bias |
|
if past_key_value is not None: |
|
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] |
|
|
|
if mask is not None: |
|
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) |
|
|
|
if self.pruned_heads: |
|
mask = torch.ones(position_bias.shape[1]) |
|
mask[list(self.pruned_heads)] = 0 |
|
position_bias_masked = position_bias[:, mask.bool()] |
|
else: |
|
position_bias_masked = position_bias |
|
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_mem_efficient=True): |
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=position_bias_masked, |
|
dropout_p=self.dropout, |
|
scale=1.0, |
|
) |
|
attn_output = unshape(attn_output) |
|
attn_output = self.o(attn_output) |
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
|
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
|
|
return outputs |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_T5_layer_ff_forward(): |
|
from transformers.models.t5.modeling_t5 import T5LayerFF |
|
|
|
def forward(self: T5LayerFF, hidden_states: torch.Tensor) -> torch.Tensor: |
|
forwarded_states = self.layer_norm(hidden_states) |
|
forwarded_states = self.DenseReluDense(forwarded_states) |
|
hidden_states = self.dropout_add(forwarded_states, hidden_states, self.dropout.p, self.dropout.training) |
|
return hidden_states |
|
|
|
return forward |
|
|
|
|
|
def get_T5_layer_self_attention_forward(): |
|
from transformers.models.t5.modeling_t5 import T5LayerSelfAttention |
|
|
|
def forward( |
|
self: T5LayerSelfAttention, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_bias: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.SelfAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = self.dropout_add(attention_output[0], hidden_states, self.dropout.p, self.dropout.training) |
|
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them |
|
return outputs |
|
|
|
return forward |
|
|
|
|
|
def get_T5_layer_cross_attention_forward(): |
|
from transformers.models.t5.modeling_t5 import T5LayerCrossAttention |
|
|
|
def forward( |
|
self: T5LayerCrossAttention, |
|
hidden_states: torch.Tensor, |
|
key_value_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_bias: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
query_length: Optional[int] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.EncDecAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
key_value_states=key_value_states, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
query_length=query_length, |
|
output_attentions=output_attentions, |
|
) |
|
layer_output = self.dropout_add(attention_output[0], hidden_states, self.dropout.p, self.dropout.training) |
|
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them |
|
return outputs |
|
|
|
return forward
|
|
|