mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1013 lines
44 KiB
1013 lines
44 KiB
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
from transformers.models.gptj.modeling_gptj import ( |
|
GPTJForCausalLM, |
|
GPTJForQuestionAnswering, |
|
GPTJForSequenceClassification, |
|
GPTJModel, |
|
apply_rotary_pos_emb, |
|
get_embed_positions, |
|
) |
|
from transformers.utils import is_torch_fx_proxy, logging |
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.shardformer.layer import ColoAttention |
|
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward |
|
from colossalai.shardformer.shard import ShardConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _get_attention_mask( |
|
self: GPTJModel, |
|
shard_config: ShardConfig, |
|
hidden_states: torch.Tensor, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]], |
|
attention_mask: Optional[torch.FloatTensor], |
|
use_flash_attention_2: bool = False, |
|
) -> Optional[Union[torch.Tensor, dict]]: |
|
batch_size, seq_len = hidden_states.shape[:2] |
|
past_key_values_length = 0 |
|
if past_key_values is not None and past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
if shard_config.enable_flash_attention: |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
attention_mask = ColoAttention.prepare_attn_kwargs( |
|
(batch_size, 1, seq_len, seq_len + past_key_values_length), |
|
hidden_states.dtype, |
|
hidden_states.device, |
|
attention_mask, |
|
is_causal=True, |
|
) |
|
elif use_flash_attention_2 and attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
# We create a 3D attention mask from a 2D tensor mask. |
|
# Sizes are [batch_size, 1, 1, to_seq_length] |
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] |
|
# this attention mask is more simple than the triangular masking of causal attention |
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. |
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for |
|
# masked positions, this operation will create a tensor which is 0.0 for |
|
# positions we want to attend and the dtype's smallest value for masked positions. |
|
# Since we are adding it to the raw scores before the softmax, this is |
|
# effectively the same as removing these entirely. |
|
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
return attention_mask |
|
|
|
|
|
class GPTJPipelineForwards: |
|
""" |
|
This class serves as a micro library for forward function substitution of GPTJ models |
|
under pipeline setting. |
|
""" |
|
|
|
@staticmethod |
|
def gptj_model_forward( |
|
self: GPTJModel, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, BaseModelOutputWithPast]: |
|
# This function is modified on the basis of transformers.models.gptj.modeling_gptj.GPTJModel.forward. |
|
# Please refer to original code of transformers for more details. |
|
# GPTJ has no cross attention in comparison to GPT2 |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
# Preprocess passed in arguments |
|
# TODO(baizhou): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if past_key_values: |
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.") |
|
past_key_values = None |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
|
|
if stage_manager.is_first_stage(): |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, seq_length) |
|
|
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, seq_length) |
|
else: |
|
if hidden_states is None: |
|
raise ValueError("hidden_states shouldn't be None for stages other than the first stage.") |
|
input_shape = hidden_states.size()[:-1] |
|
batch_size, seq_length = input_shape[0], input_shape[1] |
|
device = hidden_states.device |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape bsz x num_attention_heads x N x N |
|
# head_mask has shape n_layer x batch x num_attention_heads x N x N |
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
# position id to be assigned not just for the first stage for attn input |
|
if position_ids is None: |
|
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0) |
|
if stage_manager.is_first_stage(): |
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
hidden_states = inputs_embeds |
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
hidden_states = self.drop(hidden_states) |
|
|
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
|
|
attention_mask = _get_attention_mask( |
|
self, shard_config, hidden_states, past_key_values, attention_mask, self._use_flash_attention_2 |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
# split the input tensor along sequence dimension |
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size] |
|
if shard_config.enable_sequence_parallelism: |
|
hidden_states = split_forward_gather_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
# Going through held blocks. |
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
for i in range(start_idx, end_idx): |
|
block = self.h[i] |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
# Ensure that attention_mask is always on the same device as hidden_states |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if isinstance(head_mask, torch.Tensor): |
|
head_mask = head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
position_ids, |
|
head_mask[i], |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states=hidden_states, |
|
layer_past=None, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
# When sequence parallelism done, gather the output tensor in forward and split it in backward |
|
if shard_config.enable_sequence_parallelism: |
|
hidden_states = gather_forward_split_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
hidden_states = hidden_states.view(output_shape) |
|
# Add last hidden state |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if stage_manager.is_last_stage(): |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
else: |
|
# always return dict for intermediate stage |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def gptj_causallm_model_forward( |
|
self: GPTJForCausalLM, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
|
|
# This function is modified on the basis of transformers.models.gptj.modeling_gptj.GPTJForCausalLM.forward. |
|
# Please refer to original code of transformers for more details. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = GPTJPipelineForwards.gptj_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
# If not at the last stage, return hidden_states as in GPTJModel |
|
if not stage_manager.is_last_stage(): |
|
return {"hidden_states": transformer_outputs["hidden_states"]} |
|
|
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
# move labels to correct device to enable model parallelism |
|
labels = labels.to(lm_logits.device) |
|
# Shift so that tokens < n predict n |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
# Flatten the tokens |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def gptj_for_sequence_classification_forward( |
|
self: GPTJForSequenceClassification, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
# This function is modified on the basis of transformers.models.gptj.modeling_gptj.GPTJForSequenceClassification.forward. |
|
# Please refer to original code of transformers for more details. |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
if input_ids is not None: |
|
batch_size, _ = input_ids.shape[:2] |
|
else: |
|
batch_size, _ = hidden_states.shape[:2] |
|
assert ( |
|
self.config.pad_token_id is not None or batch_size == 1 |
|
), "Cannot handle batch sizes > 1 if no padding token is defined." |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = GPTJPipelineForwards.gptj_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
# If not at the last stage, return hidden_states as in GPTJModel |
|
if not stage_manager.is_last_stage(): |
|
return {"hidden_states": transformer_outputs["hidden_states"]} |
|
|
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility |
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning_once( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(pooled_logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def gptj_for_question_answering_forward( |
|
self: GPTJForQuestionAnswering, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
|
|
# This function is modified on the basis of transformers.models.gptj.modeling_gptj.GPTJForQuestionAnswering.forward. |
|
# Please refer to original code of transformers for more details. |
|
|
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = GPTJPipelineForwards.gptj_model_forward( |
|
self.transformer, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
# If not at the last stage, return hidden_states as in GPTJModel |
|
if not stage_manager.is_last_stage(): |
|
return {"hidden_states": outputs["hidden_states"]} |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
# If we are on multi-GPU, split add a dimension |
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms |
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def get_gptj_flash_attention_forward(): |
|
from transformers.models.gptj.modeling_gptj import GPTJAttention |
|
|
|
def forward( |
|
self: GPTJAttention, |
|
hidden_states: torch.FloatTensor, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[dict] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[ |
|
Tuple[torch.Tensor, Tuple[torch.Tensor]], |
|
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], |
|
]: |
|
assert head_mask is None, "head_mask is not supported for FlashAttention" |
|
query = self.q_proj(hidden_states) |
|
key = self.k_proj(hidden_states) |
|
value = self.v_proj(hidden_states) |
|
|
|
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True) |
|
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True) |
|
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False) |
|
|
|
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing(): |
|
# The logic to conditionally copy to GPU could not be traced, so we do this |
|
# every time in the torch.fx case |
|
embed_positions = get_embed_positions(self.embed_positions, position_ids) |
|
else: |
|
embed_positions = self._get_embed_positions(position_ids) |
|
|
|
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1]) |
|
sincos = torch.gather(embed_positions, 1, repeated_position_ids) |
|
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) |
|
|
|
if self.rotary_dim is not None: |
|
k_rot = key[:, :, :, : self.rotary_dim] |
|
k_pass = key[:, :, :, self.rotary_dim :] |
|
|
|
q_rot = query[:, :, :, : self.rotary_dim] |
|
q_pass = query[:, :, :, self.rotary_dim :] |
|
|
|
k_rot = apply_rotary_pos_emb(k_rot, sin, cos) |
|
q_rot = apply_rotary_pos_emb(q_rot, sin, cos) |
|
|
|
key = torch.cat([k_rot, k_pass], dim=-1) |
|
query = torch.cat([q_rot, q_pass], dim=-1) |
|
else: |
|
key = apply_rotary_pos_emb(key, sin, cos) |
|
query = apply_rotary_pos_emb(query, sin, cos) |
|
|
|
key = key.permute(0, 2, 1, 3) |
|
query = query.permute(0, 2, 1, 3) |
|
|
|
if layer_past is not None: |
|
past_key = layer_past[0] |
|
past_value = layer_past[1] |
|
key = torch.cat((past_key, key), dim=-2) |
|
value = torch.cat((past_value, value), dim=-2) |
|
|
|
if use_cache is True: |
|
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation. |
|
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128 |
|
present = (key.to(hidden_states.dtype), value) |
|
else: |
|
present = None |
|
|
|
dropout_p = self.attn_dropout.p if self.training else 0.0 |
|
attn_output = ColoAttention.attention(query, key, value, **attention_mask, dropout_p=dropout_p) |
|
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) |
|
attn_output = self.out_proj(attn_output) |
|
attn_output = self.resid_dropout(attn_output) |
|
outputs = (attn_output, present, None) |
|
|
|
return outputs # a, present, (attentions) |
|
|
|
return forward |
|
|
|
|
|
def gptj_model_forward_for_flash_attention(shard_config: ShardConfig): |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
|
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]).long() |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape bsz x num_attention_heads x N x N |
|
# head_mask has shape n_layer x batch x num_attention_heads x N x N |
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
|
|
attention_mask = _get_attention_mask( |
|
self, shard_config, hidden_states, past_key_values, attention_mask, self._use_flash_attention_2 |
|
) |
|
|
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
# Model parallel |
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
# Ensure layer_past is on same device as hidden_states (might not be correct) |
|
if layer_past is not None: |
|
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) |
|
# Ensure that attention_mask is always on the same device as hidden_states |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if isinstance(head_mask, torch.Tensor): |
|
head_mask = head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
# None for past_key_value |
|
return module(*inputs, use_cache, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
position_ids, |
|
head_mask[i], |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states=hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
# Model Parallel: If it's the last layer for that device, put things on the next device |
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
hidden_states = hidden_states.view(output_shape) |
|
# Add last hidden state |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
return forward |
|
|
|
|
|
def gptj_sequence_parallel_forward_fn(shard_config: ShardConfig): |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
|
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]).long() |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape bsz x num_attention_heads x N x N |
|
# head_mask has shape n_layer x batch x num_attention_heads x N x N |
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
|
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
attention_mask = _get_attention_mask( |
|
self, shard_config, hidden_states, past_key_values, attention_mask, self._use_flash_attention_2 |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
# split the input tensor along sequence dimension |
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size] |
|
hidden_states = split_forward_gather_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
# Model parallel |
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
# Ensure layer_past is on same device as hidden_states (might not be correct) |
|
if layer_past is not None: |
|
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) |
|
# Ensure that attention_mask is always on the same device as hidden_states |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if isinstance(head_mask, torch.Tensor): |
|
head_mask = head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
# None for past_key_value |
|
return module(*inputs, use_cache, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
position_ids, |
|
head_mask[i], |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states=hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
# Model Parallel: If it's the last layer for that device, put things on the next device |
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
# When sequence parallelism done, gather the output tensor in forward and split it in backward |
|
hidden_states = gather_forward_split_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
hidden_states = hidden_states.view(output_shape) |
|
# Add last hidden state |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
return forward
|
|
|