mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
896 lines
41 KiB
896 lines
41 KiB
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.models.gpt2.modeling_gpt2 import ( |
|
GPT2DoubleHeadsModel, |
|
GPT2DoubleHeadsModelOutput, |
|
GPT2ForQuestionAnswering, |
|
GPT2ForSequenceClassification, |
|
GPT2ForTokenClassification, |
|
GPT2LMHeadModel, |
|
GPT2Model, |
|
) |
|
from transformers.utils import logging |
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.shardformer.layer import ColoAttention, RingAttention |
|
from colossalai.shardformer.layer._operation import gather_sp_output, split_forward_gather_backward |
|
from colossalai.shardformer.layer.utils import is_share_sp_tp, split_batch_zigzag |
|
from colossalai.shardformer.shard import ShardConfig |
|
|
|
from ..layer import dist_cross_entropy |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _get_attention_mask( |
|
self: GPT2Model, |
|
shard_config: ShardConfig, |
|
hidden_states: torch.Tensor, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]], |
|
attention_mask: Optional[torch.FloatTensor], |
|
encoder_hidden_states: Optional[torch.Tensor], |
|
encoder_attention_mask: Optional[torch.FloatTensor], |
|
) -> Tuple[Optional[Union[torch.Tensor, dict]], Optional[Union[torch.Tensor, dict]]]: |
|
# Received input is already split for non-first pipeline stages, |
|
# but attn mask isn't |
|
batch_size = hidden_states.size(0) |
|
seq_len = attention_mask.size(-1) |
|
|
|
sp_mode = shard_config.sequence_parallelism_mode |
|
# If a 2D or 3D attention mask is provided for the cross-attention |
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] |
|
if self.config.add_cross_attention and encoder_hidden_states is not None: |
|
assert not sp_mode == "ring_attn", "Ring Attention only supports decoder-only." |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
if shard_config.enable_flash_attention: |
|
encoder_attention_mask = ColoAttention.prepare_attn_kwargs( |
|
(encoder_batch_size, 1, seq_len, encoder_sequence_length), |
|
dtype=hidden_states.dtype, |
|
dtype2=encoder_hidden_states.dtype, |
|
q_padding_mask=attention_mask, |
|
kv_padding_mask=encoder_attention_mask, |
|
) |
|
else: |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=encoder_hidden_states.device) |
|
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
if shard_config.enable_flash_attention: |
|
encoder_attention_mask = {"attention_mask": None} |
|
else: |
|
encoder_attention_mask = None |
|
|
|
# GPT2Attention mask. |
|
past_key_values_length = 0 |
|
if past_key_values is not None and past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
if shard_config.enable_flash_attention: |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
attention_mask = ColoAttention.prepare_attn_kwargs( |
|
(batch_size, 1, seq_len, seq_len + past_key_values_length), |
|
hidden_states.dtype, |
|
hidden_states.device, |
|
attention_mask, |
|
is_causal=True, |
|
) |
|
elif attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
# We create a 3D attention mask from a 2D tensor mask. |
|
# Sizes are [batch_size, 1, 1, to_seq_length] |
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] |
|
# this attention mask is more simple than the triangular masking of causal attention |
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. |
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for |
|
# masked positions, this operation will create a tensor which is 0.0 for |
|
# positions we want to attend and the dtype's smallest value for masked positions. |
|
# Since we are adding it to the raw scores before the softmax, this is |
|
# effectively the same as removing these entirely. |
|
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
return attention_mask, encoder_attention_mask |
|
|
|
|
|
class GPT2PipelineForwards: |
|
""" |
|
This class serves as a micro library for forward function substitution of GPT2 models |
|
under pipeline setting. |
|
""" |
|
|
|
@staticmethod |
|
def gpt2_model_forward( |
|
self: GPT2Model, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
force_sp_gather: Optional[bool] = True, |
|
) -> Union[Dict, Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2Model.forward. |
|
# Please refer to original code of transformers for more details. |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
# Preprocess passed in arguments |
|
# TODO(baizhou): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if past_key_values: |
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.") |
|
past_key_values = None |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
|
|
disable_pp = stage_manager is None |
|
if disable_pp or stage_manager.is_first_stage(): |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
else: |
|
if hidden_states is None: |
|
raise ValueError("hidden_states shouldn't be None for stages other than the first stage.") |
|
input_shape = hidden_states.size()[:-1] |
|
device = hidden_states.device |
|
hidden_states = hidden_states.view((-1,) + hidden_states.shape[-2:]) |
|
hidden_states.shape[0] |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape bsz x n_heads x N x N |
|
# head_mask has shape n_layer x batch x n_heads x N x N |
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if disable_pp or stage_manager.is_first_stage(): |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_shape[-1], dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
position_embeds = self.wpe(position_ids) |
|
hidden_states = inputs_embeds + position_embeds |
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
hidden_states = self.drop(hidden_states) |
|
|
|
attn_kwargs, encoder_attention_mask = _get_attention_mask( |
|
self, |
|
shard_config, |
|
hidden_states, |
|
past_key_values, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
# split the input tensor along sequence dimension |
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size] |
|
sp_mode = shard_config.sequence_parallelism_mode |
|
sp_group = shard_config.sequence_parallel_process_group |
|
if disable_pp or stage_manager.is_first_stage(): |
|
# Ring Attention's special zigzag batch processing |
|
if sp_mode == "ring_attn": |
|
assert shard_config.enable_flash_attention, "Ring Attention inherently requires Flash Attention." |
|
if not attention_mask.bool().all(): |
|
hidden_states, attn_kwargs, position_ids = RingAttention.prepare_varlen_batch( |
|
attention_mask, sp_group, hidden_states, position_ids |
|
) |
|
else: |
|
hidden_states, position_ids = split_batch_zigzag([hidden_states, position_ids], sp_group) |
|
# Other sp modes |
|
else: |
|
if sp_mode == "split_gather": |
|
hidden_states = split_forward_gather_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
) |
|
elif sp_mode == "ring_attn": |
|
# Later stages already received split hidden states |
|
_, attn_kwargs, _ = RingAttention.prepare_varlen_batch(attention_mask, sp_group) |
|
del attention_mask |
|
|
|
# Going through held blocks. |
|
if disable_pp: |
|
start_idx, end_idx = 0, len(self.h) |
|
else: |
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
|
|
for i in range(start_idx, end_idx): |
|
block = self.h[i] |
|
torch.cuda.set_device(hidden_states.device) |
|
# Ensure that attention_mask is always on the same device as hidden_states |
|
if torch.is_tensor(attn_kwargs): |
|
attn_kwargs = attn_kwargs.to(hidden_states.device) |
|
if isinstance(head_mask, torch.Tensor): |
|
head_mask = head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
None, |
|
attn_kwargs, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=None, |
|
attention_mask=attn_kwargs, |
|
head_mask=head_mask[i], |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) |
|
|
|
# When sequence parallelism is done, gather the output tensor in forward and split it in backward |
|
gather_output = (not shard_config.parallel_output) or force_sp_gather or is_share_sp_tp(sp_mode) |
|
if disable_pp or stage_manager.is_last_stage(): |
|
if gather_output: |
|
hidden_states = gather_sp_output(hidden_states, shard_config) |
|
|
|
# gather_sp_output could've changed seq length. |
|
input_shape = (*input_shape[:-1], hidden_states.size(-2)) |
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
|
|
if disable_pp or stage_manager.is_last_stage(): |
|
hidden_states = self.ln_f(hidden_states) |
|
hidden_states = hidden_states.view(output_shape) |
|
|
|
# Add last hidden state |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if disable_pp or stage_manager.is_last_stage(): |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
else: |
|
# always return dict for intermediate stage |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def gpt2_lmhead_model_forward( |
|
self: GPT2LMHeadModel, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
|
|
This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel.forward. |
|
Please refer to original code of transformers for more details. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
force_sp_gather=False, |
|
) |
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model |
|
disable_pp = stage_manager is None |
|
if (not disable_pp) and (not stage_manager.is_last_stage()): |
|
return {"hidden_states": outputs["hidden_states"]} |
|
|
|
hidden_states = outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
if shard_config.sequence_parallelism_mode == "ring_attn": |
|
# Split labels in a zigzag fashion too |
|
sp_group = shard_config.sequence_parallel_process_group |
|
if not attention_mask.bool().all(): |
|
# [B, max_seqlen // sp_size] |
|
labels, _, _ = RingAttention.prepare_varlen_batch(attention_mask, sp_group, labels, is_label=True) |
|
else: |
|
labels = split_batch_zigzag(labels, sp_group, seq_dim=1, is_label=True) |
|
|
|
if labels is not None: |
|
loss = dist_cross_entropy( |
|
labels, lm_logits, shard_config, self.lm_head.out_features, self.transformer.dtype |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
@staticmethod |
|
def gpt2_double_heads_model_forward( |
|
self: GPT2DoubleHeadsModel, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
mc_token_ids: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
mc_labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, GPT2DoubleHeadsModelOutput]: |
|
r""" |
|
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): |
|
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - |
|
1]`. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to |
|
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]` |
|
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` |
|
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) |
|
|
|
This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2DoubleHeadsModel.forward. |
|
Please refer to original code of transformers for more details. |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model |
|
if not stage_manager.is_last_stage(): |
|
return {"hidden_states": outputs["hidden_states"]} |
|
|
|
hidden_states = outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) |
|
|
|
mc_loss = None |
|
if mc_labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) |
|
lm_loss = None |
|
if labels is not None: |
|
labels = labels.to(lm_logits.device) |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits, mc_logits) + outputs[1:] |
|
if mc_loss is not None: |
|
output = (mc_loss,) + output |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return GPT2DoubleHeadsModelOutput( |
|
loss=lm_loss, |
|
mc_loss=mc_loss, |
|
logits=lm_logits, |
|
mc_logits=mc_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def gpt2_for_question_answering_forward( |
|
self: GPT2ForQuestionAnswering, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
|
|
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2ForQuestionAnswering.forward. |
|
# Please refer to original code of transformers for more details. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward( |
|
self.transformer, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model |
|
if not stage_manager.is_last_stage(): |
|
return {"hidden_states": outputs["hidden_states"]} |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
# If we are on multi-GPU, split add a dimension |
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms |
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def gpt2_for_token_classification_forward( |
|
self: GPT2ForTokenClassification, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2ForTokenClassification.forward. |
|
# Please refer to original code of transformers for more details. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model |
|
if not stage_manager.is_last_stage(): |
|
return {"hidden_states": outputs["hidden_states"]} |
|
|
|
hidden_states = outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def gpt2_for_sequence_classification_forward( |
|
self: GPT2ForSequenceClassification, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
) -> Union[Dict, Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2ForSequenceClassification.forward. |
|
# Please refer to original code of transformers for more details. |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
if input_ids is not None: |
|
batch_size, _ = input_ids.shape[:2] |
|
else: |
|
batch_size, _ = hidden_states.shape[:2] |
|
assert ( |
|
self.config.pad_token_id is not None or batch_size == 1 |
|
), "Cannot handle batch sizes > 1 if no padding token is defined." |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = GPT2PipelineForwards.gpt2_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
# If not at the last stage, return hidden_states as in GPT2Model |
|
if not stage_manager.is_last_stage(): |
|
return {"hidden_states": outputs["hidden_states"]} |
|
|
|
hidden_states = outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility |
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning_once( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def get_gpt2_flash_attention_forward(shard_config: Optional[ShardConfig] = None): |
|
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention |
|
|
|
def forward( |
|
self: GPT2Attention, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[dict] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[dict] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: |
|
assert head_mask is None, "FlashAttention does not support head_mask" |
|
if encoder_hidden_states is not None: |
|
if not hasattr(self, "q_attn"): |
|
raise ValueError( |
|
"If class is used as cross attention, the weights `q_attn` have to be defined. " |
|
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`." |
|
) |
|
|
|
query = self.q_attn(hidden_states) |
|
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) |
|
attention_mask = encoder_attention_mask |
|
else: |
|
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) |
|
query = self._split_heads(query, self.num_heads, self.head_dim) |
|
key = self._split_heads(key, self.num_heads, self.head_dim) |
|
value = self._split_heads(value, self.num_heads, self.head_dim) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
key = torch.cat((past_key, key), dim=1) |
|
value = torch.cat((past_value, value), dim=1) |
|
|
|
if use_cache is True: |
|
present = (key, value) |
|
else: |
|
present = None |
|
|
|
scale = 1.0 |
|
if self.scale_attn_weights: |
|
scale /= value.size(-1) ** 0.5 |
|
if self.scale_attn_by_inverse_layer_idx: |
|
scale /= float(self.layer_idx + 1) |
|
dropout_p = self.attn_dropout.p if self.training else 0.0 |
|
|
|
sp_mode = shard_config.sequence_parallelism_mode |
|
sp_group = shard_config.sequence_parallel_process_group |
|
if sp_mode == "ring_attn": |
|
attn_output = RingAttention.attention( |
|
query, |
|
key, |
|
value, |
|
sp_group, |
|
**attention_mask, |
|
dropout_p=dropout_p, |
|
scale=scale, |
|
inner_ring_size=shard_config.inner_ring_size, |
|
) |
|
else: |
|
attn_output = ColoAttention.attention(query, key, value, **attention_mask, dropout_p=dropout_p, scale=scale) |
|
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) |
|
attn_output = self.c_proj(attn_output) |
|
attn_output = self.resid_dropout(attn_output) |
|
outputs = (attn_output, present, None) |
|
|
|
return outputs |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_gpt2_mlp_forward(): |
|
from transformers.models.gpt2.modeling_gpt2 import GPT2MLP |
|
|
|
from colossalai.kernel.jit.bias_gelu import GeLUFunction as JitGeLUFunction |
|
|
|
def forward(self: GPT2MLP, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: |
|
hidden_states, bias = self.c_fc(hidden_states) |
|
hidden_states = JitGeLUFunction.apply(hidden_states, bias) |
|
hidden_states = self.c_proj(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
return forward
|
|
|