Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

654 lines
26 KiB

""" PyTorch ChatGLM model. """
from typing import List, Optional, Tuple
import torch
import torch.utils.checkpoint
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig
from colossalai.shardformer.layer import AttnMaskType, ColoAttention
from colossalai.shardformer.layer._operation import (
all_to_all_comm,
gather_sp_output,
is_share_sp_tp,
split_forward_gather_backward,
)
from ..layer import dist_cross_entropy
def get_flash_core_attention_forward():
from .chatglm2_6b.modeling_chatglm import CoreAttention
def forward(self: CoreAttention, query_layer, key_layer, value_layer, attention_mask):
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
attention_mask_type = AttnMaskType.CAUSAL
attn_bias = torch.zeros(
query_layer.shape[0],
1,
query_layer.shape[2],
key_layer.shape[2],
dtype=query_layer.dtype,
device=query_layer.device,
)
temp_mask = (
torch.ones(
query_layer.shape[2],
key_layer.shape[2],
dtype=torch.bool,
device=query_layer.device,
)
.tril(diagonal=0)
.expand(query_layer.shape[0], 1, -1, -1)
)
attn_bias.masked_fill_(temp_mask.logical_not(), torch.finfo(query_layer.dtype).min)
else:
attention_mask_type = AttnMaskType.CUSTOM
if attention_mask is not None:
attn_bias = torch.zeros_like(attention_mask, dtype=query_layer.dtype)
attn_bias.masked_fill_(attention_mask, torch.finfo(query_layer.dtype).min)
dropout_p = self.attention_dropout.p if self.training else 0.0
context_layer = ColoAttention.attention(
query_layer,
key_layer,
value_layer,
attention_mask=attn_bias,
attention_mask_type=attention_mask_type,
dropout_p=dropout_p,
scale=1.0 / self.norm_factor,
)
context_layer = context_layer.permute(2, 0, 1, 3)
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.reshape(*new_context_layer_shape)
return context_layer
return forward
def get_jit_fused_glm_block_forward():
from .chatglm2_6b.modeling_chatglm import GLMBlock
def forward(
self: GLMBlock,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=None,
use_cache=True,
):
# hidden_states: [s, b, h]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Self attention.
attention_output, kv_cache = self.self_attention(
layernorm_output,
attention_mask,
rotary_pos_emb,
kv_cache=kv_cache,
use_cache=use_cache,
)
# Residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
layernorm_input = self.dropout_add(attention_output, residual, self.hidden_dropout, self.training)
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# MLP.
mlp_output = self.mlp(layernorm_output)
# Second residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = layernorm_input
output = self.dropout_add(mlp_output, residual, self.hidden_dropout, self.training)
return output, kv_cache
return forward
class ChatGLMPipelineForwards:
"""
This class serves as a micro library for ChatGLM model forwards under pipeline parallelism.
"""
@staticmethod
def chatglm_model_forward(
self: "ChatGLMModel",
input_ids,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
full_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
force_sp_output_gather: Optional[bool] = True,
):
logger = logging.get_logger(__name__)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if past_key_values:
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.")
past_key_values = None
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
if use_cache:
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
use_cache = False
if stage_manager.is_first_stage():
batch_size, seq_length = input_ids.shape
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
hidden_states = inputs_embeds
else:
seq_length, batch_size = hidden_states.shape[:2]
if self.pre_seq_len is not None:
if past_key_values is None:
past_key_values = self.get_prompt(
batch_size=batch_size,
device=input_ids.device,
dtype=inputs_embeds.dtype,
)
if attention_mask is not None:
attention_mask = torch.cat(
[
attention_mask.new_ones((batch_size, self.pre_seq_len)),
attention_mask,
],
dim=-1,
)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
# Support SP + PP
sp_size = shard_config.sequence_parallel_size
sp_mode = shard_config.sequence_parallelism_mode
sp_group = shard_config.sequence_parallel_process_group
# For generating full positions ids (the states will be gathered along the seq dim before attention fwd).
if sp_mode != "ring_attn" and not stage_manager.is_first_stage():
seq_length *= sp_size
# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
if not past_key_values:
past_key_values = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
if self.encoder.gradient_checkpointing and self.encoder.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
start_idx, end_idx = stage_index[0], stage_index[1]
# Keep the input split across all PP stages
if stage_manager.is_first_stage():
if shard_config.enable_sequence_parallelism:
if sp_mode == "split_gather":
hidden_states = split_forward_gather_backward(
hidden_states,
dim=0,
process_group=sp_group,
)
elif shard_config.sequence_parallelism_mode == "all_to_all":
hidden_states = split_forward_gather_backward(
hidden_states,
dim=0,
process_group=shard_config.sequence_parallel_process_group,
grad_scale=1 / shard_config.sequence_parallel_size,
)
for idx in range(start_idx, end_idx):
layer = self.encoder._get_layer(idx)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.encoder.gradient_checkpointing and self.encoder.training:
layer_ret = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
attention_mask,
rotary_pos_emb,
past_key_values[idx],
use_cache,
)
else:
layer_ret = layer(
hidden_states,
full_attention_mask,
rotary_pos_emb,
kv_cache=past_key_values[idx],
use_cache=use_cache,
)
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if stage_manager.is_last_stage():
# final layer_norm
if self.encoder.post_layer_norm:
hidden_states = self.encoder.final_layernorm(hidden_states)
# Gather seq-wise in the final output stage
if shard_config.enable_sequence_parallelism:
sp_mode = shard_config.sequence_parallelism_mode
if (not shard_config.parallel_output) or force_sp_output_gather or is_share_sp_tp(sp_mode):
hidden_states = gather_sp_output(hidden_states, shard_config, sp_dim=0)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
else:
return {"hidden_states": hidden_states}
@staticmethod
def chatglm_for_conditional_generation_forward(
self: "ChatGLMForConditionalGeneration",
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
logging.get_logger(__name__)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = ChatGLMPipelineForwards.chatglm_model_forward(
self.transformer,
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
shard_config=shard_config,
force_sp_output_gather=False,
)
if stage_manager.is_last_stage():
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[-1:]
lm_logits = self.transformer.output_layer(hidden_states)
lm_logits = lm_logits.transpose(0, 1).contiguous()
loss = None
if labels is not None:
# ChatGLM doesn't have lm_head split
enable_tp = shard_config.enable_tensor_parallelism
shard_config.enable_tensor_parallelism = False
loss = dist_cross_entropy(
labels,
lm_logits,
shard_config,
self.transformer.output_layer.out_features,
lm_logits.dtype,
)
shard_config.enable_tensor_parallelism = enable_tp
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
return transformer_outputs
def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig, sp_mode, sp_size, sp_group):
logger = logging.get_logger(__name__)
def forward(
self,
input_ids,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
full_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
force_sp_output_gather: Optional[bool] = True,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = input_ids.shape
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
if self.pre_seq_len is not None:
if past_key_values is None:
past_key_values = self.get_prompt(
batch_size=batch_size,
device=input_ids.device,
dtype=inputs_embeds.dtype,
)
if attention_mask is not None:
attention_mask = torch.cat(
[
attention_mask.new_ones((batch_size, self.pre_seq_len)),
attention_mask,
],
dim=-1,
)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
if sp_mode in ["all_to_all"] and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with sp mode `{sp_mode}`. Setting `use_cache=False`..."
)
use_cache = False
if sp_mode in ["all_to_all"] and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with sp mode `{sp_mode}`. Setting `use_cache=False`..."
)
use_cache = False
# Run encoder.
# [seq_len, batch_size, hidden_size] -> [seq_len/TP_size, batch_size, hidden_size]
if sp_mode in ["split_gather"]:
inputs_embeds = split_forward_gather_backward(
inputs_embeds,
dim=0,
process_group=sp_group,
fp8_communication=shard_config.fp8_communication,
)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(
inputs_embeds,
dim=0,
process_group=sp_group,
grad_scale=1 / sp_size,
fp8_communication=shard_config.fp8_communication,
)
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds,
full_attention_mask,
rotary_pos_emb=rotary_pos_emb,
kv_caches=past_key_values,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
)
if shard_config.enable_sequence_parallelism:
if (not shard_config.parallel_output) or force_sp_output_gather or is_share_sp_tp(sp_mode):
hidden_states = gather_sp_output(hidden_states, shard_config, sp_dim=0)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
return forward
def get_chatglm_sequence_parallel_attention_forward(shard_config: ShardConfig, sp_mode, sp_size, sp_group):
from .chatglm2_6b.modeling_chatglm import apply_rotary_pos_emb, split_tensor_along_last_dim
def forward(
self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=None,
use_cache=True,
):
if sp_mode is not None:
assert sp_mode in ["all_to_all", "split_gather"], "Invalid sp_mode"
assert (sp_size is not None) and (
sp_group is not None
), "Must specify sp_size and sp_group for sequence parallel"
mixed_x_layer = self.query_key_value(hidden_states)
if self.multi_query_attention:
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
[
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
],
dim=-1,
)
query_layer = query_layer.view(
query_layer.size()[:-1]
+ (
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
)
key_layer = key_layer.view(
key_layer.size()[:-1]
+ (
self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head,
)
)
value_layer = value_layer.view(
value_layer.size()[:-1]
+ (
self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head,
)
)
else:
new_tensor_shape = mixed_x_layer.size()[:-1] + (
self.num_attention_heads_per_partition,
3 * self.hidden_size_per_attention_head,
)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
sq, bs, _, _ = value_layer.size()
query_layer = query_layer.reshape(sq, bs, -1)
key_layer = key_layer.reshape(sq, bs, -1)
value_layer = value_layer.reshape(sq, bs, -1)
query_layer = all_to_all_comm(
query_layer,
sp_group,
gather_dim=0,
fp8_communication=shard_config.fp8_communication,
)
key_layer = all_to_all_comm(
key_layer,
sp_group,
gather_dim=0,
fp8_communication=shard_config.fp8_communication,
)
value_layer = all_to_all_comm(
value_layer,
sp_group,
gather_dim=0,
fp8_communication=shard_config.fp8_communication,
)
query_layer = query_layer.view(
sq * sp_size,
bs,
self.num_attention_heads_per_partition // sp_size,
self.hidden_size_per_attention_head,
).contiguous()
key_layer = key_layer.view(
sq * sp_size,
bs,
self.num_attention_heads_per_partition // sp_size,
self.hidden_size_per_attention_head,
).contiguous()
value_layer = value_layer.view(
sq * sp_size,
bs,
self.num_attention_heads_per_partition // sp_size,
self.hidden_size_per_attention_head,
).contiguous()
# apply relative positional encoding (rotary embedding)
if rotary_pos_emb is not None:
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
# adjust key and value for inference
if kv_cache is not None:
cache_k, cache_v = kv_cache
key_layer = torch.cat((cache_k, key_layer), dim=0)
value_layer = torch.cat((cache_v, value_layer), dim=0)
if use_cache:
kv_cache = (key_layer, value_layer)
else:
kv_cache = None
if self.multi_query_attention:
key_layer = key_layer.unsqueeze(-2)
key_layer = key_layer.expand(
-1,
-1,
-1,
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
-1,
)
key_layer = key_layer.contiguous().view(
key_layer.size()[:2]
+ (
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
)
value_layer = value_layer.unsqueeze(-2)
value_layer = value_layer.expand(
-1,
-1,
-1,
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
-1,
)
value_layer = value_layer.contiguous().view(
value_layer.size()[:2]
+ (
self.num_attention_heads_per_partition // sp_size,
self.hidden_size_per_attention_head,
)
)
# ==================================
# core attention computation
# ==================================
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
if sp_mode == "all_to_all":
context_layer = all_to_all_comm(
context_layer,
sp_group,
gather_dim=2,
scatter_dim=0,
fp8_communication=shard_config.fp8_communication,
)
# =================
# Output. [sq, b, h]
# =================
output = self.dense(context_layer)
return output, kv_cache
return forward