mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
654 lines
26 KiB
654 lines
26 KiB
""" PyTorch ChatGLM model. """ |
|
|
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.utils import logging |
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.shardformer import ShardConfig |
|
from colossalai.shardformer.layer import AttnMaskType, ColoAttention |
|
from colossalai.shardformer.layer._operation import ( |
|
all_to_all_comm, |
|
gather_sp_output, |
|
is_share_sp_tp, |
|
split_forward_gather_backward, |
|
) |
|
|
|
from ..layer import dist_cross_entropy |
|
|
|
|
|
def get_flash_core_attention_forward(): |
|
from .chatglm2_6b.modeling_chatglm import CoreAttention |
|
|
|
def forward(self: CoreAttention, query_layer, key_layer, value_layer, attention_mask): |
|
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]] |
|
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: |
|
attention_mask_type = AttnMaskType.CAUSAL |
|
attn_bias = torch.zeros( |
|
query_layer.shape[0], |
|
1, |
|
query_layer.shape[2], |
|
key_layer.shape[2], |
|
dtype=query_layer.dtype, |
|
device=query_layer.device, |
|
) |
|
temp_mask = ( |
|
torch.ones( |
|
query_layer.shape[2], |
|
key_layer.shape[2], |
|
dtype=torch.bool, |
|
device=query_layer.device, |
|
) |
|
.tril(diagonal=0) |
|
.expand(query_layer.shape[0], 1, -1, -1) |
|
) |
|
attn_bias.masked_fill_(temp_mask.logical_not(), torch.finfo(query_layer.dtype).min) |
|
else: |
|
attention_mask_type = AttnMaskType.CUSTOM |
|
if attention_mask is not None: |
|
attn_bias = torch.zeros_like(attention_mask, dtype=query_layer.dtype) |
|
attn_bias.masked_fill_(attention_mask, torch.finfo(query_layer.dtype).min) |
|
dropout_p = self.attention_dropout.p if self.training else 0.0 |
|
context_layer = ColoAttention.attention( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attention_mask=attn_bias, |
|
attention_mask_type=attention_mask_type, |
|
dropout_p=dropout_p, |
|
scale=1.0 / self.norm_factor, |
|
) |
|
context_layer = context_layer.permute(2, 0, 1, 3) |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) |
|
context_layer = context_layer.reshape(*new_context_layer_shape) |
|
return context_layer |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_glm_block_forward(): |
|
from .chatglm2_6b.modeling_chatglm import GLMBlock |
|
|
|
def forward( |
|
self: GLMBlock, |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=None, |
|
use_cache=True, |
|
): |
|
# hidden_states: [s, b, h] |
|
# Layer norm at the beginning of the transformer layer. |
|
layernorm_output = self.input_layernorm(hidden_states) |
|
# Self attention. |
|
attention_output, kv_cache = self.self_attention( |
|
layernorm_output, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=kv_cache, |
|
use_cache=use_cache, |
|
) |
|
|
|
# Residual connection. |
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = hidden_states |
|
|
|
layernorm_input = self.dropout_add(attention_output, residual, self.hidden_dropout, self.training) |
|
|
|
# Layer norm post the self attention. |
|
layernorm_output = self.post_attention_layernorm(layernorm_input) |
|
|
|
# MLP. |
|
mlp_output = self.mlp(layernorm_output) |
|
|
|
# Second residual connection. |
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = layernorm_input |
|
|
|
output = self.dropout_add(mlp_output, residual, self.hidden_dropout, self.training) |
|
|
|
return output, kv_cache |
|
|
|
return forward |
|
|
|
|
|
class ChatGLMPipelineForwards: |
|
""" |
|
This class serves as a micro library for ChatGLM model forwards under pipeline parallelism. |
|
""" |
|
|
|
@staticmethod |
|
def chatglm_model_forward( |
|
self: "ChatGLMModel", |
|
input_ids, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
full_attention_mask: Optional[torch.BoolTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
force_sp_output_gather: Optional[bool] = True, |
|
): |
|
logger = logging.get_logger(__name__) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if past_key_values: |
|
logger.warning_once("Non-empty past_key_values is not supported for pipeline models at the moment.") |
|
past_key_values = None |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
if stage_manager.is_first_stage(): |
|
batch_size, seq_length = input_ids.shape |
|
if inputs_embeds is None: |
|
inputs_embeds = self.embedding(input_ids) |
|
hidden_states = inputs_embeds |
|
else: |
|
seq_length, batch_size = hidden_states.shape[:2] |
|
if self.pre_seq_len is not None: |
|
if past_key_values is None: |
|
past_key_values = self.get_prompt( |
|
batch_size=batch_size, |
|
device=input_ids.device, |
|
dtype=inputs_embeds.dtype, |
|
) |
|
if attention_mask is not None: |
|
attention_mask = torch.cat( |
|
[ |
|
attention_mask.new_ones((batch_size, self.pre_seq_len)), |
|
attention_mask, |
|
], |
|
dim=-1, |
|
) |
|
if full_attention_mask is None: |
|
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): |
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) |
|
|
|
# Support SP + PP |
|
sp_size = shard_config.sequence_parallel_size |
|
sp_mode = shard_config.sequence_parallelism_mode |
|
sp_group = shard_config.sequence_parallel_process_group |
|
# For generating full positions ids (the states will be gathered along the seq dim before attention fwd). |
|
if sp_mode != "ring_attn" and not stage_manager.is_first_stage(): |
|
seq_length *= sp_size |
|
|
|
# Rotary positional embeddings |
|
rotary_pos_emb = self.rotary_pos_emb(self.seq_length) |
|
if position_ids is not None: |
|
rotary_pos_emb = rotary_pos_emb[position_ids] |
|
else: |
|
rotary_pos_emb = rotary_pos_emb[None, :seq_length] |
|
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() |
|
if not past_key_values: |
|
past_key_values = [None for _ in range(self.num_layers)] |
|
presents = () if use_cache else None |
|
if self.encoder.gradient_checkpointing and self.encoder.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
all_self_attentions = None |
|
all_hidden_states = () if output_hidden_states else None |
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
|
|
# Keep the input split across all PP stages |
|
if stage_manager.is_first_stage(): |
|
if shard_config.enable_sequence_parallelism: |
|
if sp_mode == "split_gather": |
|
hidden_states = split_forward_gather_backward( |
|
hidden_states, |
|
dim=0, |
|
process_group=sp_group, |
|
) |
|
elif shard_config.sequence_parallelism_mode == "all_to_all": |
|
hidden_states = split_forward_gather_backward( |
|
hidden_states, |
|
dim=0, |
|
process_group=shard_config.sequence_parallel_process_group, |
|
grad_scale=1 / shard_config.sequence_parallel_size, |
|
) |
|
|
|
for idx in range(start_idx, end_idx): |
|
layer = self.encoder._get_layer(idx) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
if self.encoder.gradient_checkpointing and self.encoder.training: |
|
layer_ret = torch.utils.checkpoint.checkpoint( |
|
layer, |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
past_key_values[idx], |
|
use_cache, |
|
) |
|
else: |
|
layer_ret = layer( |
|
hidden_states, |
|
full_attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=past_key_values[idx], |
|
use_cache=use_cache, |
|
) |
|
hidden_states, kv_cache = layer_ret |
|
if use_cache: |
|
presents = presents + (kv_cache,) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
if stage_manager.is_last_stage(): |
|
# final layer_norm |
|
if self.encoder.post_layer_norm: |
|
hidden_states = self.encoder.final_layernorm(hidden_states) |
|
|
|
# Gather seq-wise in the final output stage |
|
if shard_config.enable_sequence_parallelism: |
|
sp_mode = shard_config.sequence_parallelism_mode |
|
if (not shard_config.parallel_output) or force_sp_output_gather or is_share_sp_tp(sp_mode): |
|
hidden_states = gather_sp_output(hidden_states, shard_config, sp_dim=0) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
else: |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def chatglm_for_conditional_generation_forward( |
|
self: "ChatGLMForConditionalGeneration", |
|
input_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
return_last_logit: Optional[bool] = False, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
logging.get_logger(__name__) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
transformer_outputs = ChatGLMPipelineForwards.chatglm_model_forward( |
|
self.transformer, |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
force_sp_output_gather=False, |
|
) |
|
if stage_manager.is_last_stage(): |
|
hidden_states = transformer_outputs[0] |
|
if return_last_logit: |
|
hidden_states = hidden_states[-1:] |
|
lm_logits = self.transformer.output_layer(hidden_states) |
|
lm_logits = lm_logits.transpose(0, 1).contiguous() |
|
|
|
loss = None |
|
if labels is not None: |
|
# ChatGLM doesn't have lm_head split |
|
enable_tp = shard_config.enable_tensor_parallelism |
|
shard_config.enable_tensor_parallelism = False |
|
loss = dist_cross_entropy( |
|
labels, |
|
lm_logits, |
|
shard_config, |
|
self.transformer.output_layer.out_features, |
|
lm_logits.dtype, |
|
) |
|
shard_config.enable_tensor_parallelism = enable_tp |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
else: |
|
return transformer_outputs |
|
|
|
|
|
def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig, sp_mode, sp_size, sp_group): |
|
logger = logging.get_logger(__name__) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
full_attention_mask: Optional[torch.BoolTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
force_sp_output_gather: Optional[bool] = True, |
|
): |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
batch_size, seq_length = input_ids.shape |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embedding(input_ids) |
|
|
|
if self.pre_seq_len is not None: |
|
if past_key_values is None: |
|
past_key_values = self.get_prompt( |
|
batch_size=batch_size, |
|
device=input_ids.device, |
|
dtype=inputs_embeds.dtype, |
|
) |
|
if attention_mask is not None: |
|
attention_mask = torch.cat( |
|
[ |
|
attention_mask.new_ones((batch_size, self.pre_seq_len)), |
|
attention_mask, |
|
], |
|
dim=-1, |
|
) |
|
|
|
if full_attention_mask is None: |
|
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): |
|
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) |
|
|
|
# Rotary positional embeddings |
|
rotary_pos_emb = self.rotary_pos_emb(self.seq_length) |
|
if position_ids is not None: |
|
rotary_pos_emb = rotary_pos_emb[position_ids] |
|
else: |
|
rotary_pos_emb = rotary_pos_emb[None, :seq_length] |
|
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() |
|
|
|
if sp_mode in ["all_to_all"] and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with sp mode `{sp_mode}`. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
if sp_mode in ["all_to_all"] and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with sp mode `{sp_mode}`. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
# Run encoder. |
|
# [seq_len, batch_size, hidden_size] -> [seq_len/TP_size, batch_size, hidden_size] |
|
if sp_mode in ["split_gather"]: |
|
inputs_embeds = split_forward_gather_backward( |
|
inputs_embeds, |
|
dim=0, |
|
process_group=sp_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
elif sp_mode == "all_to_all": |
|
inputs_embeds = split_forward_gather_backward( |
|
inputs_embeds, |
|
dim=0, |
|
process_group=sp_group, |
|
grad_scale=1 / sp_size, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( |
|
inputs_embeds, |
|
full_attention_mask, |
|
rotary_pos_emb=rotary_pos_emb, |
|
kv_caches=past_key_values, |
|
use_cache=use_cache, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
if shard_config.enable_sequence_parallelism: |
|
if (not shard_config.parallel_output) or force_sp_output_gather or is_share_sp_tp(sp_mode): |
|
hidden_states = gather_sp_output(hidden_states, shard_config, sp_dim=0) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
return forward |
|
|
|
|
|
def get_chatglm_sequence_parallel_attention_forward(shard_config: ShardConfig, sp_mode, sp_size, sp_group): |
|
from .chatglm2_6b.modeling_chatglm import apply_rotary_pos_emb, split_tensor_along_last_dim |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
rotary_pos_emb, |
|
kv_cache=None, |
|
use_cache=True, |
|
): |
|
if sp_mode is not None: |
|
assert sp_mode in ["all_to_all", "split_gather"], "Invalid sp_mode" |
|
assert (sp_size is not None) and ( |
|
sp_group is not None |
|
), "Must specify sp_size and sp_group for sequence parallel" |
|
|
|
mixed_x_layer = self.query_key_value(hidden_states) |
|
if self.multi_query_attention: |
|
(query_layer, key_layer, value_layer) = mixed_x_layer.split( |
|
[ |
|
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, |
|
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, |
|
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, |
|
], |
|
dim=-1, |
|
) |
|
query_layer = query_layer.view( |
|
query_layer.size()[:-1] |
|
+ ( |
|
self.num_attention_heads_per_partition, |
|
self.hidden_size_per_attention_head, |
|
) |
|
) |
|
key_layer = key_layer.view( |
|
key_layer.size()[:-1] |
|
+ ( |
|
self.num_multi_query_groups_per_partition, |
|
self.hidden_size_per_attention_head, |
|
) |
|
) |
|
value_layer = value_layer.view( |
|
value_layer.size()[:-1] |
|
+ ( |
|
self.num_multi_query_groups_per_partition, |
|
self.hidden_size_per_attention_head, |
|
) |
|
) |
|
else: |
|
new_tensor_shape = mixed_x_layer.size()[:-1] + ( |
|
self.num_attention_heads_per_partition, |
|
3 * self.hidden_size_per_attention_head, |
|
) |
|
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) |
|
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn] |
|
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) |
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel |
|
if sp_mode == "all_to_all": |
|
sq, bs, _, _ = value_layer.size() |
|
|
|
query_layer = query_layer.reshape(sq, bs, -1) |
|
key_layer = key_layer.reshape(sq, bs, -1) |
|
value_layer = value_layer.reshape(sq, bs, -1) |
|
|
|
query_layer = all_to_all_comm( |
|
query_layer, |
|
sp_group, |
|
gather_dim=0, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
key_layer = all_to_all_comm( |
|
key_layer, |
|
sp_group, |
|
gather_dim=0, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
value_layer = all_to_all_comm( |
|
value_layer, |
|
sp_group, |
|
gather_dim=0, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
query_layer = query_layer.view( |
|
sq * sp_size, |
|
bs, |
|
self.num_attention_heads_per_partition // sp_size, |
|
self.hidden_size_per_attention_head, |
|
).contiguous() |
|
|
|
key_layer = key_layer.view( |
|
sq * sp_size, |
|
bs, |
|
self.num_attention_heads_per_partition // sp_size, |
|
self.hidden_size_per_attention_head, |
|
).contiguous() |
|
|
|
value_layer = value_layer.view( |
|
sq * sp_size, |
|
bs, |
|
self.num_attention_heads_per_partition // sp_size, |
|
self.hidden_size_per_attention_head, |
|
).contiguous() |
|
|
|
# apply relative positional encoding (rotary embedding) |
|
if rotary_pos_emb is not None: |
|
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) |
|
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) |
|
|
|
# adjust key and value for inference |
|
if kv_cache is not None: |
|
cache_k, cache_v = kv_cache |
|
key_layer = torch.cat((cache_k, key_layer), dim=0) |
|
value_layer = torch.cat((cache_v, value_layer), dim=0) |
|
if use_cache: |
|
kv_cache = (key_layer, value_layer) |
|
else: |
|
kv_cache = None |
|
|
|
if self.multi_query_attention: |
|
key_layer = key_layer.unsqueeze(-2) |
|
key_layer = key_layer.expand( |
|
-1, |
|
-1, |
|
-1, |
|
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, |
|
-1, |
|
) |
|
key_layer = key_layer.contiguous().view( |
|
key_layer.size()[:2] |
|
+ ( |
|
self.num_attention_heads_per_partition, |
|
self.hidden_size_per_attention_head, |
|
) |
|
) |
|
value_layer = value_layer.unsqueeze(-2) |
|
value_layer = value_layer.expand( |
|
-1, |
|
-1, |
|
-1, |
|
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, |
|
-1, |
|
) |
|
value_layer = value_layer.contiguous().view( |
|
value_layer.size()[:2] |
|
+ ( |
|
self.num_attention_heads_per_partition // sp_size, |
|
self.hidden_size_per_attention_head, |
|
) |
|
) |
|
|
|
# ================================== |
|
# core attention computation |
|
# ================================== |
|
|
|
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) |
|
if sp_mode == "all_to_all": |
|
context_layer = all_to_all_comm( |
|
context_layer, |
|
sp_group, |
|
gather_dim=2, |
|
scatter_dim=0, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
# ================= |
|
# Output. [sq, b, h] |
|
# ================= |
|
output = self.dense(context_layer) |
|
|
|
return output, kv_cache |
|
|
|
return forward
|
|
|