mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1058 lines
48 KiB
1058 lines
48 KiB
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch.distributed import ProcessGroup |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from torch.nn import functional as F |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
CausalLMOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.models.bloom.modeling_bloom import ( |
|
BloomForCausalLM, |
|
BloomForQuestionAnswering, |
|
BloomForSequenceClassification, |
|
BloomForTokenClassification, |
|
BloomModel, |
|
) |
|
from transformers.utils import logging |
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward |
|
from colossalai.shardformer.shard import ShardConfig |
|
|
|
from ..layer import dist_cross_entropy |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def build_bloom_alibi_tensor_fn(process_group: ProcessGroup) -> torch.Tensor: |
|
def build_bloom_alibi_tensor( |
|
self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype |
|
) -> torch.Tensor: |
|
""" |
|
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it |
|
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value |
|
`softmax(l+a) = softmax(l)`. Based on |
|
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 |
|
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. |
|
|
|
Args: |
|
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) |
|
attention_mask (`torch.Tensor`): |
|
Token-wise attention mask, this should be of shape (batch_size, max_seq_len). |
|
num_heads (`int`, *required*): |
|
number of heads |
|
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): |
|
dtype of the output tensor |
|
""" |
|
import math |
|
|
|
if dist.is_initialized(): |
|
world_size = dist.get_world_size(process_group) |
|
num_heads = num_heads * world_size |
|
|
|
batch_size, seq_length = attention_mask.shape |
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) |
|
base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 |
|
) |
|
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) |
|
slopes = torch.pow(base, powers) |
|
|
|
if closest_power_of_2 != num_heads: |
|
extra_base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), |
|
device=attention_mask.device, |
|
dtype=torch.float32, |
|
) |
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) |
|
extra_powers = torch.arange( |
|
1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32 |
|
) |
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) |
|
|
|
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention |
|
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) |
|
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) |
|
# => the query_length dimension will then be broadcasted correctly |
|
# This is more or less identical to T5's relative position bias: |
|
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 |
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] |
|
alibi = slopes[..., None] * arange_tensor |
|
if dist.is_initialized(): |
|
num_heads_per_rank = int(num_heads / dist.get_world_size(process_group)) |
|
offset = dist.get_rank(process_group) * num_heads_per_rank |
|
alibi = alibi.view(batch_size, num_heads, 1, seq_length) |
|
alibi = alibi[:, offset : num_heads_per_rank + offset, :, :] |
|
return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype) |
|
else: |
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) |
|
|
|
return build_bloom_alibi_tensor |
|
|
|
|
|
class BloomPipelineForwards: |
|
""" |
|
This class serves as a micro library for bloom pipeline forwards. |
|
""" |
|
|
|
@staticmethod |
|
def bloom_model_forward( |
|
self: BloomModel, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor, ...], "BaseModelOutputWithPastAndCrossAttentions"]: |
|
logger = logging.get_logger(__name__) |
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` |
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
# add warnings here |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape batch_size x num_heads x N x N |
|
|
|
# head_mask has shape n_layer x batch x num_heads x N x N |
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
# case: First stage of training |
|
if stage_manager.is_first_stage(): |
|
# check input_ids and inputs_embeds |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds) |
|
# initialize in the first stage and then pass to the next stage |
|
else: |
|
input_shape = hidden_states.shape[:-1] |
|
batch_size, seq_length = input_shape |
|
|
|
# extra recording tensor should be generated in the first stage |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * len(self.h)) |
|
# Compute alibi tensor: check build_alibi_tensor documentation,build for every stage |
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] # source_len |
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) |
|
else: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
|
|
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) |
|
|
|
# causal_mask is constructed every stage and its input is passed through different stages |
|
causal_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
input_shape=(batch_size, seq_length), |
|
inputs_embeds=hidden_states, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
causal_mask = causal_mask.bool() |
|
# split the input tensor along sequence dimension |
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size] |
|
if shard_config and shard_config.enable_sequence_parallelism: |
|
if shard_config.sequence_parallelism_mode == "split_gather": |
|
hidden_states = split_forward_gather_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
for i, (block, layer_past) in enumerate( |
|
zip(self.h[start_idx:end_idx], past_key_values[start_idx:end_idx]), start=start_idx |
|
): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
alibi, |
|
causal_mask, |
|
layer_past, |
|
head_mask[i], |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=causal_mask, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
alibi=alibi, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
# When sequence parallelism done, gather the output tensor in forward and split it in backward |
|
if shard_config and shard_config.enable_sequence_parallelism: |
|
if shard_config.sequence_parallelism_mode == "split_gather": |
|
hidden_states = gather_forward_split_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
# Add last hidden state |
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
# TODO(jianghai): deal with all_hidden_states, all_self_attentions, presents |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if stage_manager.is_last_stage(): |
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None |
|
) |
|
|
|
# attention_mask is not returned ; presents = past_key_values |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
else: |
|
# always return dict for imediate stage |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bloom_for_causal_lm_forward( |
|
self: BloomForCausalLM, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
**deprecated_arguments, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` |
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
transformer_outputs = BloomPipelineForwards.bloom_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
past_key_values = None |
|
if stage_manager.is_last_stage(): |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states).contiguous() |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = dist_cross_entropy( |
|
labels, |
|
lm_logits, |
|
shard_config, |
|
self.lm_head.out_features, |
|
self.transformer.dtype, |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
else: |
|
hidden_states = transformer_outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bloom_for_sequence_classification_forward( |
|
self: BloomForSequenceClassification, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
**deprecated_arguments, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` |
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
transformer_outputs = BloomPipelineForwards.bloom_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
past_key_values = None |
|
if stage_manager.is_last_stage(): |
|
batch_size = hidden_states.shape[0] |
|
# update batch size |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility |
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
else: |
|
hidden_states = transformer_outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bloom_for_token_classification_forward( |
|
self: BloomForTokenClassification, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
**deprecated_arguments, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` |
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
transformer_outputs = BloomPipelineForwards.bloom_model_forward( |
|
self.transformer, |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
past_key_values = None |
|
|
|
if stage_manager.is_last_stage(): |
|
hidden_states = transformer_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
# move labels to correct device to enable model parallelism |
|
labels = labels.to(logits.device) |
|
batch_size, seq_length = labels.shape |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
else: |
|
hidden_states = transformer_outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bloom_for_question_answering_forward( |
|
self: BloomForQuestionAnswering, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = BloomPipelineForwards.bloom_model_forward( |
|
self.transformer, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
sequence_output = outputs[0] |
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
# If we are on multi-GPU, split add a dimension |
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms |
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
|
|
def get_jit_fused_bloom_attention_forward(): |
|
from transformers.models.bloom.modeling_bloom import BloomAttention |
|
|
|
def forward( |
|
self: BloomAttention, |
|
hidden_states: torch.Tensor, |
|
residual: torch.Tensor, |
|
alibi: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] |
|
|
|
# 3 x [batch_size, seq_length, num_heads, head_dim] |
|
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) |
|
|
|
batch_size, q_length, _, _ = query_layer.shape |
|
|
|
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) |
|
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length) |
|
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) |
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
# concatenate along seq_length dimension: |
|
# - key: [batch_size * self.num_heads, head_dim, kv_length] |
|
# - value: [batch_size * self.num_heads, kv_length, head_dim] |
|
key_layer = torch.cat((past_key, key_layer), dim=2) |
|
value_layer = torch.cat((past_value, value_layer), dim=1) |
|
|
|
_, _, kv_length = key_layer.shape |
|
|
|
if use_cache is True: |
|
present = (key_layer, value_layer) |
|
else: |
|
present = None |
|
|
|
# [batch_size * num_heads, q_length, kv_length] |
|
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 |
|
matmul_result = alibi.baddbmm( |
|
batch1=query_layer, |
|
batch2=key_layer, |
|
beta=self.beta, |
|
alpha=self.inv_norm_factor, |
|
) |
|
|
|
# change view to [batch_size, num_heads, q_length, kv_length] |
|
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) |
|
|
|
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] |
|
input_dtype = attention_scores.dtype |
|
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` |
|
if input_dtype == torch.float16: |
|
attention_scores = attention_scores.to(torch.float) |
|
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) |
|
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) |
|
|
|
# [batch_size, num_heads, q_length, kv_length] |
|
attention_probs = self.attention_dropout(attention_probs) |
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
# change view [batch_size x num_heads, q_length, kv_length] |
|
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) |
|
|
|
# matmul: [batch_size * num_heads, q_length, head_dim] |
|
context_layer = torch.bmm(attention_probs_reshaped, value_layer) |
|
|
|
# change view [batch_size, num_heads, q_length, head_dim] |
|
context_layer = self._merge_heads(context_layer) |
|
|
|
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 |
|
if self.pretraining_tp > 1 and self.slow_but_exact: |
|
slices = self.hidden_size / self.pretraining_tp |
|
output_tensor = torch.zeros_like(context_layer) |
|
for i in range(self.pretraining_tp): |
|
output_tensor = output_tensor + F.linear( |
|
context_layer[:, :, int(i * slices) : int((i + 1) * slices)], |
|
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], |
|
) |
|
else: |
|
output_tensor = self.dense(context_layer) |
|
|
|
output_tensor = self.dropout_add(output_tensor, residual, self.hidden_dropout, self.training) |
|
|
|
outputs = (output_tensor, present) |
|
if output_attentions: |
|
outputs += (attention_probs,) |
|
|
|
return outputs |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_bloom_mlp_forward(): |
|
from transformers.models.bloom.modeling_bloom import BloomMLP |
|
|
|
def forward(self: BloomMLP, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) |
|
|
|
if self.pretraining_tp > 1 and self.slow_but_exact: |
|
intermediate_output = torch.zeros_like(residual) |
|
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp |
|
for i in range(self.pretraining_tp): |
|
intermediate_output = intermediate_output + F.linear( |
|
hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], |
|
self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)], |
|
) |
|
else: |
|
intermediate_output = self.dense_4h_to_h(hidden_states) |
|
output = self.dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) |
|
return output |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_bloom_gelu_forward(): |
|
from transformers.models.bloom.modeling_bloom import BloomGelu |
|
|
|
from colossalai.kernel.jit.bias_gelu import GeLUFunction as JitGeLUFunction |
|
|
|
def forward(self: BloomGelu, x: torch.Tensor) -> torch.Tensor: |
|
bias = torch.zeros_like(x) |
|
if self.training: |
|
return JitGeLUFunction.apply(x, bias) |
|
else: |
|
return self.bloom_gelu_forward(x, bias) |
|
|
|
return forward |
|
|
|
|
|
def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig): |
|
from transformers import BloomModel |
|
|
|
def forward( |
|
self: BloomModel, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: |
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` |
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * len(self.h)) |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape batch_size x num_heads x N x N |
|
# head_mask has shape n_layer x batch x num_heads x N x N |
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds) |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
# Compute alibi tensor: check build_alibi_tensor documentation |
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) |
|
else: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
|
|
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) |
|
|
|
causal_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
input_shape=(batch_size, seq_length), |
|
inputs_embeds=hidden_states, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
causal_mask = causal_mask.bool() |
|
# split the input tensor along sequence dimension |
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size] |
|
hidden_states = split_forward_gather_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
alibi, |
|
causal_mask, |
|
layer_past, |
|
head_mask[i], |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=causal_mask, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
alibi=alibi, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
# When sequence parallelism done, gather the output tensor in forward and split it in backward |
|
hidden_states = gather_forward_split_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
# Add last hidden state |
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
return forward |
|
|
|
|
|
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig): |
|
from transformers import BloomForCausalLM |
|
|
|
def forward( |
|
self: BloomForCausalLM, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
past_key_values = None |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = dist_cross_entropy( |
|
labels, lm_logits, shard_config, self.lm_head.out_features, self.transformer.dtype |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
return forward
|
|
|