mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1210 lines
56 KiB
1210 lines
56 KiB
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
NextSentencePredictorOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.models.bert.modeling_bert import ( |
|
BertForMaskedLM, |
|
BertForMultipleChoice, |
|
BertForNextSentencePrediction, |
|
BertForPreTraining, |
|
BertForPreTrainingOutput, |
|
BertForQuestionAnswering, |
|
BertForSequenceClassification, |
|
BertForTokenClassification, |
|
BertLMHeadModel, |
|
BertModel, |
|
) |
|
from transformers.utils import logging |
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.shardformer import ShardConfig |
|
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward |
|
|
|
|
|
class BertPipelineForwards: |
|
""" |
|
This class serves as a micro library for forward function substitution of Bert models |
|
under pipeline setting. |
|
""" |
|
|
|
@staticmethod |
|
def bert_model_forward( |
|
self: BertModel, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, # this is from the previous stage |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
# TODO(jianghai): add explaination of the output here. |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if stage_manager.is_first_stage(): |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
else: |
|
input_shape = hidden_states.size()[:-1] |
|
batch_size, seq_length = input_shape |
|
device = hidden_states.device |
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
if use_cache: |
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
|
use_cache = False |
|
|
|
# past_key_values_length |
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] |
|
# ourselves in which case we just need to make it broadcastable to all heads. |
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
attention_mask = extended_attention_mask |
|
# If a 2D or 3D attention mask is provided for the cross-attention |
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] |
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape bsz x n_heads x N x N |
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] |
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] |
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
hidden_states = hidden_states if hidden_states is not None else None |
|
|
|
if stage_manager.is_first_stage(): |
|
hidden_states = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
# inherit from bert_layer,this should be changed when we add the feature to record hidden_states |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
if self.encoder.gradient_checkpointing and self.encoder.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
next_decoder_cache = () if use_cache else None |
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1] |
|
# layer_outputs |
|
layer_outputs = hidden_states if hidden_states is not None else None |
|
|
|
# split the input tensor along sequence dimension |
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size] |
|
if shard_config is not None and shard_config.enable_sequence_parallelism: |
|
if shard_config.sequence_parallelism_mode == "split_gather": |
|
hidden_states = split_forward_gather_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states = split_forward_gather_backward( |
|
encoder_hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
for idx, encoder_layer in enumerate(self.encoder.layer[start_idx:end_idx], start=start_idx): |
|
if stage_manager.is_first_stage() and idx == 0: |
|
encoder_attention_mask = encoder_extended_attention_mask |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[idx] if head_mask is not None else None |
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.encoder.gradient_checkpointing and self.encoder.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
# When sequence parallelism done, gather the output tensor in forward and split it in backward |
|
if shard_config is not None and shard_config.enable_sequence_parallelism: |
|
if shard_config.sequence_parallelism_mode == "split_gather": |
|
hidden_states = gather_forward_split_backward( |
|
hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
# end of a stage loop |
|
sequence_output = hidden_states if hidden_states is not None else None |
|
|
|
if stage_manager.is_last_stage(): |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
if not return_dict: |
|
return (sequence_output, pooled_output) + layer_outputs[1:] |
|
# return dict is not supported at this moment |
|
else: |
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
# output of non-first and non-last stages: must be a dict |
|
else: |
|
# intermediate stage always return dict |
|
return { |
|
"hidden_states": hidden_states, |
|
} |
|
|
|
@staticmethod |
|
def bert_for_pretraining_forward( |
|
self: BertForPreTraining, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
next_sentence_label: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
# TODO(jianghai) left the recording kv-value tensors as () or None type, this feature may be added in the future. |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = BertPipelineForwards.bert_model_forward( |
|
self.bert, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states if hidden_states is not None else None, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
sequence_output, pooled_output = outputs[:2] |
|
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) |
|
# the last stage for pretraining model |
|
total_loss = None |
|
if labels is not None and next_sentence_label is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) |
|
total_loss = masked_lm_loss + next_sentence_loss |
|
|
|
if not return_dict: |
|
output = (prediction_scores, seq_relationship_score) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return BertForPreTrainingOutput( |
|
loss=total_loss, |
|
prediction_logits=prediction_scores, |
|
seq_relationship_logits=seq_relationship_score, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
|
|
# intermediate stage always return dict |
|
return { |
|
"hidden_states": hidden_states, |
|
} |
|
|
|
@staticmethod |
|
def bert_lm_head_model_forward( |
|
self: BertLMHeadModel, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
logger = logging.get_logger(__name__) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if labels is not None: |
|
use_cache = False |
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = BertPipelineForwards.bert_model_forward( |
|
self.bert, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
stage_manager=stage_manager, |
|
hidden_states=hidden_states if hidden_states is not None else None, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
past_key_values = None |
|
|
|
if stage_manager.is_last_stage(): |
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
lm_loss = None |
|
if labels is not None: |
|
# we are doing next-token prediction; shift prediction scores and input ids by one |
|
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=lm_loss, |
|
logits=prediction_scores, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
# intermediate stage always return dict |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bert_for_masked_lm_forward( |
|
self: BertForMaskedLM, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
hidden_states: Optional[torch.Tensor] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = BertPipelineForwards.bert_model_forward( |
|
self.bert, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
hidden_states=hidden_states, |
|
stage_manager=stage_manager, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() # -100 index = padding token |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bert_for_next_sentence_prediction_forward( |
|
self: BertForNextSentencePrediction, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
hidden_states: Optional[torch.Tensor] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
**kwargs, |
|
): |
|
# -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair |
|
(see `input_ids` docstring). Indices should be in `[0, 1]`: |
|
|
|
- 0 indicates sequence B is a continuation of sequence A, |
|
- 1 indicates sequence B is a random sequence. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, BertForNextSentencePrediction |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
>>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." |
|
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") |
|
|
|
>>> outputs = model(**encoding, labels=torch.LongTensor([1])) |
|
>>> logits = outputs.logits |
|
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random |
|
``` |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
if "next_sentence_label" in kwargs: |
|
warnings.warn( |
|
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use" |
|
" `labels` instead.", |
|
FutureWarning, |
|
) |
|
labels = kwargs.pop("next_sentence_label") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = BertPipelineForwards.bert_model_forward( |
|
self.bert, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
hidden_states=hidden_states, |
|
stage_manager=stage_manager, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
pooled_output = outputs[1] |
|
seq_relationship_scores = self.cls(pooled_output) |
|
|
|
next_sentence_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (seq_relationship_scores,) + outputs[2:] |
|
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output |
|
|
|
return NextSentencePredictorOutput( |
|
loss=next_sentence_loss, |
|
logits=seq_relationship_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
# intermediate stage always return dict |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bert_for_sequence_classification_forward( |
|
self: BertForSequenceClassification, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
hidden_states: Optional[torch.Tensor] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = BertPipelineForwards.bert_model_forward( |
|
self.bert, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
hidden_states=hidden_states, |
|
stage_manager=stage_manager, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bert_for_token_classification_forward( |
|
self: BertForTokenClassification, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
hidden_states: Optional[torch.Tensor] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = BertPipelineForwards.bert_model_forward( |
|
self.bert, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
hidden_states=hidden_states, |
|
stage_manager=stage_manager, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
|
|
if stage_manager.is_last_stage(): |
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bert_for_multiple_choice_forward( |
|
self: BertForMultipleChoice, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
hidden_states: Optional[torch.Tensor] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., |
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See |
|
`input_ids` above) |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
# in our pipeline design,input ids are copied for every stage and shouldn't be none |
|
# the input_ids for multiple choice model is [batch_size, num_choices, sequence_length] |
|
if stage_manager.is_last_stage(): |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
|
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
|
|
outputs = BertPipelineForwards.bert_model_forward( |
|
self.bert, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
hidden_states=hidden_states, |
|
stage_manager=stage_manager, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
if stage_manager.is_last_stage(): |
|
pooled_output = outputs[1] |
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
|
|
if not return_dict: |
|
output = (reshaped_logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=reshaped_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
@staticmethod |
|
def bert_for_question_answering_forward( |
|
self: BertForQuestionAnswering, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
start_positions: Optional[torch.Tensor] = None, |
|
end_positions: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
hidden_states: Optional[torch.Tensor] = None, |
|
stage_manager: Optional[PipelineStageManager] = None, |
|
stage_index: Optional[List[int]] = None, |
|
shard_config: ShardConfig = None, |
|
): |
|
# NOTE: the arg start_position and end_position are used only for the last stage |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
logger = logging.get_logger(__name__) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
|
output_attentions = False |
|
if output_hidden_states: |
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
|
output_hidden_states = False |
|
|
|
outputs = BertPipelineForwards.bert_model_forward( |
|
self.bert, |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
hidden_states=hidden_states, |
|
stage_manager=stage_manager, |
|
stage_index=stage_index, |
|
shard_config=shard_config, |
|
) |
|
if stage_manager.is_last_stage(): |
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
# If we are on multi-GPU, split add a dimension |
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms |
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
hidden_states = outputs.get("hidden_states") |
|
return {"hidden_states": hidden_states} |
|
|
|
|
|
def get_jit_fused_bert_self_output_forward(): |
|
from transformers.models.bert.modeling_bert import BertSelfOutput |
|
|
|
def forward(self: BertSelfOutput, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout_add(hidden_states, input_tensor, self.dropout.p, self.dropout.training) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_bert_output_forward(): |
|
from transformers.models.bert.modeling_bert import BertOutput |
|
|
|
def forward(self: BertOutput, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout_add(hidden_states, input_tensor, self.dropout.p, self.dropout.training) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
return forward |
|
|
|
|
|
def bert_sequence_parallel_forward_fn(shard_config: ShardConfig): |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
# past_key_values_length |
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] |
|
# ourselves in which case we just need to make it broadcastable to all heads. |
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
# If a 2D or 3D attention mask is provided for the cross-attention |
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] |
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
# Prepare head mask if needed |
|
# 1.0 in head_mask indicate we keep the head |
|
# attention_probs has shape bsz x n_heads x N x N |
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] |
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] |
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
# split the input tensor along sequence dimension |
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size] |
|
embedding_output = split_forward_gather_backward( |
|
embedding_output, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states = split_forward_gather_backward( |
|
encoder_hidden_states, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = encoder_outputs[0] |
|
|
|
# When sequence parallelism done, gather the output tensor in forward and split it in backward |
|
sequence_output = gather_forward_split_backward( |
|
sequence_output, |
|
dim=1, |
|
process_group=shard_config.tensor_parallel_process_group, |
|
fp8_communication=shard_config.fp8_communication, |
|
) |
|
|
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
return forward |
|
|
|
|
|
def get_jit_fused_bert_intermediate_forward(): |
|
from transformers.models.bert.modeling_bert import BertIntermediate |
|
|
|
from colossalai.kernel.jit.bias_gelu import GeLUFunction as JitGeLUFunction |
|
|
|
def forward(self: BertIntermediate, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states, bias = self.dense(hidden_states) |
|
hidden_states = JitGeLUFunction.apply(hidden_states, bias) |
|
return hidden_states |
|
|
|
return forward
|
|
|