Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

63 lines
1.4 KiB

from typing import List, Tuple
import pytest
import torch
try:
import diffusers
MODELS = [diffusers.UNet2DModel]
HAS_REPO = True
from packaging import version
SKIP_UNET_TEST = version.parse(diffusers.__version__) > version.parse("0.10.2")
except:
MODELS = []
HAS_REPO = False
SKIP_UNET_TEST = False
from test_autochunk_diffuser_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.testing import clear_cache_before_run, parameterize, spawn
BATCH_SIZE = 1
HEIGHT = 448
WIDTH = 448
IN_CHANNELS = 3
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7)
def get_data(shape: tuple) -> Tuple[List, List]:
sample = torch.randn(shape)
meta_args = [
("sample", sample),
]
concrete_args = [("timestep", 50)]
return meta_args, concrete_args
@pytest.mark.skipif(
SKIP_UNET_TEST,
reason="diffusers version > 0.10.2",
)
@pytest.mark.skipif(
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
reason="torch version is lower than 1.12.0",
)
@clear_cache_before_run()
@parameterize("model", MODELS)
@parameterize("shape", [LATENTS_SHAPE])
@parameterize("max_memory", [None, 150, 300])
def test_evoformer_block(model, shape, max_memory):
spawn(
run_test,
1,
max_memory=max_memory,
model=model,
data=get_data(shape),
)
if __name__ == "__main__":
test_evoformer_block()