You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/legacy/inference/hybridengine/modeling/llama.py

490 lines
21 KiB

# This code is adapted from huggingface transformers: https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/llama/modeling_llama.py
import math
from typing import List, Optional, Tuple
import torch
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel
from transformers.utils import logging
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
from colossalai.kernel.triton import llama_context_attn_fwd, token_attention_fwd
from colossalai.kernel.triton.token_attention_kernel import Llama2TokenAttentionForwards
from colossalai.pipeline.stage_manager import PipelineStageManager
from ._utils import copy_kv_to_mem_cache
try:
from lightllm.models.llama2.triton_kernel.context_flashattention_nopad import (
context_attention_fwd as lightllm_llama2_context_attention_fwd,
)
from lightllm.models.llama.triton_kernel.context_flashattention_nopad import (
context_attention_fwd as lightllm_context_attention_fwd,
)
from lightllm.models.llama.triton_kernel.rotary_emb import rotary_emb_fwd as llama_rotary_embedding_fwd
HAS_LIGHTLLM_KERNEL = True
except:
print("please install lightllm from source to run inference: https://github.com/ModelTC/lightllm")
HAS_LIGHTLLM_KERNEL = False
try:
from flash_attn import flash_attn_with_kvcache
HAS_FLASH_KERNEL = True
except:
HAS_FLASH_KERNEL = False
print("please install flash attentiom from https://github.com/Dao-AILab/flash-attention")
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def llama_triton_context_attention(
query_states, key_states, value_states, attn_output, infer_state, num_key_value_groups=1
):
if num_key_value_groups == 1:
if HAS_LIGHTLLM_KERNEL is False:
llama_context_attn_fwd(
query_states,
key_states,
value_states,
attn_output,
infer_state.start_loc,
infer_state.seq_len,
# infer_state.cache_manager.past_key_values_length,
infer_state.max_len_in_batch,
)
else:
lightllm_context_attention_fwd(
query_states,
key_states,
value_states,
attn_output,
infer_state.start_loc,
infer_state.seq_len,
# infer_state.cache_manager.past_key_values_length,
infer_state.max_len_in_batch,
)
else:
assert HAS_LIGHTLLM_KERNEL is True, "You have to install lightllm kernels to run llama2 model"
lightllm_llama2_context_attention_fwd(
query_states,
key_states,
value_states,
attn_output,
infer_state.start_loc,
infer_state.seq_len,
# infer_state.cache_manager.past_key_values_length,
infer_state.max_len_in_batch,
)
def llama_triton_token_attention(query_states, attn_output, infer_state, num_key_value_groups=1):
assert HAS_LIGHTLLM_KERNEL is True, "You have to install lightllm kernel to run token attention for llama models"
if num_key_value_groups == 1:
token_attention_fwd(
query_states,
infer_state.cache_manager.key_buffer[infer_state.decode_layer_id],
infer_state.cache_manager.value_buffer[infer_state.decode_layer_id],
attn_output,
infer_state.block_loc,
infer_state.start_loc,
infer_state.seq_len,
# infer_state.cache_manager.past_key_values_length,
infer_state.max_len_in_batch,
)
else:
Llama2TokenAttentionForwards.token_attn(
query_states,
infer_state.cache_manager.key_buffer[infer_state.decode_layer_id],
infer_state.cache_manager.value_buffer[infer_state.decode_layer_id],
attn_output,
infer_state.block_loc,
infer_state.start_loc,
infer_state.seq_len,
# infer_state.cache_manager.past_key_values_length,
infer_state.max_len_in_batch,
infer_state.other_kv_index,
)
class LlamaInferenceForwards:
"""
This class holds forwards for llama inference.
We intend to replace the forward methods for LlamaModel, LlamaDecoderLayer, and LlamaAttention for LlamaForCausalLM.
"""
@staticmethod
def llama_causal_lm_forward(
self: LlamaForCausalLM,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
infer_state: BatchInferState = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
):
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
logger = logging.get_logger(__name__)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
# If is first stage and after warmup, go throught lm_head first
if stage_manager.is_first_stage() and hidden_states is not None:
lm_logits = self.lm_head(hidden_states)
return {"logits": lm_logits}
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = LlamaInferenceForwards.llama_model_forward(
self.model,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
infer_state=infer_state,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
)
return outputs
@staticmethod
def llama_model_forward(
self: LlamaModel,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
infer_state: BatchInferState = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
# retrieve input_ids and inputs_embeds
if stage_manager is None or stage_manager.is_first_stage():
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
else:
assert stage_manager is not None
assert hidden_states is not None, f"hidden_state should not be none in stage {stage_manager.stage}"
input_shape = hidden_states.shape[:-1]
batch_size, seq_length = input_shape
device = hidden_states.device
if infer_state.is_context_stage:
past_key_values_length = 0
else:
past_key_values_length = infer_state.max_len_in_batch - 1
# NOTE: differentiate with prefill stage
# block_loc require different value-assigning method for two different stage
if use_cache and seq_length != 1:
# NOTE assume prefill stage
# allocate memory block
infer_state.is_context_stage = True # set prefill stage, notify attention layer
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
infer_state.init_block_loc(
infer_state.block_loc, infer_state.seq_len, seq_length, infer_state.context_mem_index
)
else:
infer_state.is_context_stage = False
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
if alloc_mem is not None:
infer_state.decode_is_contiguous = True
infer_state.decode_mem_index = alloc_mem[0]
infer_state.decode_mem_start = alloc_mem[1]
infer_state.decode_mem_end = alloc_mem[2]
infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index
else:
infer_state.decode_is_contiguous = False
alloc_mem = infer_state.cache_manager.alloc(batch_size)
infer_state.decode_mem_index = alloc_mem
infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index
if position_ids is None:
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.repeat(batch_size, 1)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if infer_state.is_context_stage:
infer_state.position_cos = torch.index_select(self._cos_cached, 0, position_ids.view(-1)).view(
position_ids.view(-1).shape[0], -1
)
infer_state.position_sin = torch.index_select(self._sin_cached, 0, position_ids.view(-1)).view(
position_ids.view(-1).shape[0], -1
)
else:
seq_len = infer_state.seq_len
infer_state.position_cos = torch.index_select(self._cos_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
infer_state.position_sin = torch.index_select(self._sin_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
infer_state.other_kv_index = infer_state.block_loc[0, infer_state.max_len_in_batch - 1].item()
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, infer_state.max_len_in_batch), dtype=torch.bool, device=hidden_states.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
)
# decoder layers
infer_state.decode_layer_id = 0
start_idx, end_idx = stage_index[0], stage_index[1]
if past_key_values is None:
past_key_values = tuple([None] * (end_idx - start_idx + 1))
for idx, past_key_value in zip(range(start_idx, end_idx), past_key_values):
decoder_layer = self.layers[idx]
# NOTE: modify here for passing args to decoder layer
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
infer_state=infer_state,
)
infer_state.decode_layer_id += 1
hidden_states = layer_outputs[0]
if stage_manager.is_last_stage() or stage_manager.num_stages == 1:
hidden_states = self.norm(hidden_states)
# update indices
# infer_state.block_loc[:, infer_state.max_len_in_batch-1] = infer_state.total_token_num + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
infer_state.start_loc += torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
infer_state.seq_len += 1
infer_state.max_len_in_batch += 1
# if not return_dict:
# return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
# return BaseModelOutputWithPast(
# last_hidden_state=hidden_states,
# past_key_values=next_cache,
# hidden_states=all_hidden_states,
# attentions=all_self_attns,
# )
return {"hidden_states": hidden_states}
@staticmethod
def llama_decoder_layer_forward(
self: LlamaDecoderLayer,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
infer_state: Optional[BatchInferState] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
infer_state=infer_state,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
@staticmethod
def llama_flash_attn_kvcache_forward(
self: LlamaAttention,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
infer_state: Optional[BatchInferState] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert use_cache is True, "use_cache should be set to True using this llama attention"
bsz, q_len, _ = hidden_states.size()
# NOTE might think about better way to handle transposed k and v
# key_states [bs, seq_len, num_heads, head_dim/embed_size_per_head]
# key_states_transposed [bs, num_heads, seq_len, head_dim/embed_size_per_head]
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim)
# NOTE might want to revise
# need some way to record the length of past key values cache
# since we won't return past_key_value_cache right now
cos, sin = infer_state.position_cos, infer_state.position_sin
llama_rotary_embedding_fwd(query_states.view(-1, self.num_heads, self.head_dim), cos, sin)
llama_rotary_embedding_fwd(key_states.view(-1, self.num_key_value_heads, self.head_dim), cos, sin)
query_states = query_states.reshape(-1, self.num_heads, self.head_dim)
key_states = key_states.reshape(-1, self.num_key_value_heads, self.head_dim)
value_states = value_states.reshape(-1, self.num_key_value_heads, self.head_dim)
if infer_state.is_context_stage:
# first token generation
# copy key and value calculated in current step to memory manager
copy_kv_to_mem_cache(
infer_state.decode_layer_id,
key_states,
value_states,
infer_state.context_mem_index,
infer_state.cache_manager,
)
attn_output = torch.empty_like(query_states)
llama_triton_context_attention(
query_states,
key_states,
value_states,
attn_output,
infer_state,
num_key_value_groups=self.num_key_value_groups,
)
else:
if infer_state.decode_is_contiguous:
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id][
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
]
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id][
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
]
cache_k.copy_(key_states)
cache_v.copy_(value_states)
else:
# if decode is not contiguous, use triton kernel to copy key and value cache
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head
copy_kv_to_mem_cache(
infer_state.decode_layer_id,
key_states,
value_states,
infer_state.decode_mem_index,
infer_state.cache_manager,
)
if HAS_LIGHTLLM_KERNEL:
attn_output = torch.empty_like(query_states)
llama_triton_token_attention(
query_states, attn_output, infer_state, num_key_value_groups=self.num_key_value_groups
)
else:
self.num_heads // self.num_key_value_heads
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id]
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id]
query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim)
copy_cache_k = cache_k.view(bsz, -1, self.num_key_value_heads, self.head_dim)
copy_cache_v = cache_v.view(bsz, -1, self.num_key_value_heads, self.head_dim)
attn_output = flash_attn_with_kvcache(
q=query_states,
k_cache=copy_cache_k,
v_cache=copy_cache_v,
softmax_scale=1 / math.sqrt(self.head_dim),
causal=True,
)
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
# return past_key_value as None
return attn_output, None, None