import contextlib import os from typing import Any, Callable, Dict, List, Optional, Tuple import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from colossalai.accelerator import get_accelerator from colossalai.moe.manager import MOE_MANAGER from colossalai.tensor.moe_tensor.api import get_dp_group, get_dp_group_ranks, get_ep_size, is_moe_tensor class ForceFP32Parameter(torch.nn.Parameter): def half(self, memory_format=None): return self.data.clone() class NormalNoiseGenerator: """Generates a random noisy mask for logits tensor. All noise is generated from a normal distribution :math:`(0, 1 / E^2)`, where `E = the number of experts`. Args: num_experts (int): The number of experts. """ def __init__(self, num_experts: int): self.normal = torch.distributions.normal.Normal( loc=torch.tensor(0.0, device=get_accelerator().get_current_device()), scale=torch.tensor(1.0 / num_experts**2, device=get_accelerator().get_current_device()), ).rsample def __call__(self, inputs: torch.Tensor): noisy = self.normal(inputs.shape) return inputs + noisy class UniformNoiseGenerator: """Generates a random noisy mask for logits tensor. copied from mesh tensorflow: Multiply values by a random number between :math:`1-epsilon` and :math:`1+epsilon`. Makes models more resilient to rounding errors introduced by bfloat16. This seems particularly important for logits. Args: eps (float, optional): Epsilon in generator, defaults 1e-2. """ def __init__(self, eps: float = 1e-2): self.uniform = torch.distributions.uniform.Uniform( low=torch.tensor(1.0 - eps, device=get_accelerator().get_current_device()), high=torch.tensor(1.0 + eps, device=get_accelerator().get_current_device()), ).rsample def __call__(self, inputs: torch.Tensor): noisy = self.uniform(inputs.shape) return inputs * noisy def autocast_softmax(logit: torch.Tensor, dim: int): return F.softmax(logit, dim=dim, detype=torch.float32) def get_noise_generator(noise_type: str, num_experts: int) -> Callable: if noise_type is None: return None elif noise_type == "Jitter": noisy_func = UniformNoiseGenerator() elif noise_type == "Gaussian": noisy_func = NormalNoiseGenerator(num_experts) else: raise NotImplementedError("Unsupported input noisy policy") return noisy_func def get_activation(act: str) -> Callable: if act is None or act == "relu": return torch.nn.ReLU() elif act == "gelu": return torch.nn.GELU() elif act == "swiglu": return SwiGLU else: raise NotImplementedError("Unsupported activation function") def SwiGLU(x): """Gated linear unit activation function. Args: x : input array axis: the axis along which the split should be computed (default: -1) """ size = x.shape[-1] assert size % 2 == 0, "axis size must be divisible by 2" x1, x2 = torch.split(x, size // 2, -1) return x1 * (x2 * torch.sigmoid(x2)) @contextlib.contextmanager def skip_init(): """ skip param random init """ def _skip_init(*args, **kwargs): pass init_func = { "constant_": torch.nn.init.constant_, "uniform_": torch.nn.init.uniform_, "normal_": torch.nn.init.normal_, "kaiming_uniform_": torch.nn.init.kaiming_uniform_, "kaiming_normal_": torch.nn.init.kaiming_normal_, "xavier_normal_": torch.nn.init.xavier_normal_, "xavier_uniform_": torch.nn.init.xavier_uniform_, "trunc_normal_": torch.nn.init.trunc_normal_, } for method_name, original_init in init_func.items(): setattr(torch.nn.init, method_name, _skip_init) yield for method_name, original_init in init_func.items(): setattr(torch.nn.init, method_name, original_init) return def get_moe_epsize_param_dict(model: nn.Module) -> Dict[int, List[nn.Parameter]]: """Returns a parameter dictionary, the key of which is the expert parallel size of every parameter. Since the parameters in data parallelism is replicated in each GPU, we set their ep_size to 1. Args: model (:class:`torch.nn.Module`): A pyTorch `nn.Module` from which we get dict. """ epsize_param_dict = dict() for param in model.parameters(): if not is_moe_tensor(param): ep_size = 1 # set ep_size to 1 for dp parameters else: ep_size = get_ep_size(param) if ep_size not in epsize_param_dict: epsize_param_dict[ep_size] = [] epsize_param_dict[ep_size].append(param) return epsize_param_dict def sync_moe_model_param(model: nn.Module): """Make sure model parameters are consistent in MoE parallel context. Args: model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency. """ param_dict = get_moe_epsize_param_dict(model) # synchronize the parameters whose dp_group is the whole world if 1 in param_dict: for param in param_dict[1]: dist.broadcast(param, src=0) for ep_size in param_dict: # When ep_size = world_size, communication is not needed if ep_size != 1 and ep_size != MOE_MANAGER.world_size: for param in param_dict[ep_size]: src_rank = get_dp_group_ranks(param)[0] dist.broadcast(param, src=src_rank, group=get_dp_group(param)) def set_moe_args(config: Any, args: dict): for k, v in args.items(): setattr(config, k, v) def create_ep_hierarchical_group( ep_group_ranks: List[int], nproc_per_node: Optional[int] = None, ) -> Tuple[int, dist.ProcessGroup, Optional[dist.ProcessGroup]]: """ e.g., If ep_group = [1, 2, 5, 6], and nproc_per_node = 4 Then, ep_intra_group = [1, 2] & [5, 6], ep_inter_group = [1, 5] & None """ assert dist.is_initialized(), "Please initialize torch.distributed first." rank = dist.get_rank() if nproc_per_node is None: nproc_per_node = os.environ.get("LOCAL_WORLD_SIZE") assert nproc_per_node is not None, "Please use torchrun to launch the job, or specify nproc_per_node manually." nproc_per_node = int(nproc_per_node) else: assert dist.get_world_size() % nproc_per_node == 0, "nproc_per_node should be a divisor of world_size." num_node = dist.get_world_size() // nproc_per_node intra_src_rank = None ep_intra_node_group = None for i in range(num_node): ep_intra_ranks = [i * nproc_per_node + j for j in range(nproc_per_node) if j in ep_group_ranks] group = dist.new_group(ep_intra_ranks) if rank in ep_intra_ranks: assert ep_intra_node_group is None ep_intra_node_group = group intra_src_rank = ep_intra_ranks[0] ep_inter_node_group = None ep_inter_ranks = [ep_group_ranks[0] + i * nproc_per_node for i in range(num_node)] if len(ep_inter_ranks) > 1: group = dist.new_group(ep_inter_ranks) if rank in ep_inter_ranks: ep_inter_node_group = group return intra_src_rank, ep_intra_node_group, ep_inter_node_group