#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import torch.nn as nn import torch.distributed as dist from torch import Tensor from typing import Any from torch.optim import Optimizer from torch.distributed import ReduceOp from colossalai.core import global_context as gpc from colossalai.context import ParallelMode from colossalai.nn.optimizer import ColossalaiOptimizer from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from ._fp16_optimizer import FP16Optimizer class NaiveAMPOptimizer(ColossalaiOptimizer): """A wrapper class for optimizer to cast all parameters to fp16 Args: optim (torch.optim.Optimizer): A normal optimizer like Adam or SGD. grad_scaler (BaseGradScaler): grad scaler for gradient chose in ``constant_grad_scaler`` or ``dynamic_grad_scaler``. clip_grad_norm (float, optional): clip gradients with this global L2 norm. Default 0. verbose (bool, optional): if set to `True`, will print debug info. Default False. Note: clipping is ignored if ``clip_grad_norm`` equals 0. """ def __init__(self, optim: Optimizer, *args, **kwargs): optim = FP16Optimizer(optim, *args, **kwargs) super().__init__(optim) def backward(self, loss: Tensor): self.optim.backward(loss) def step(self): return self.optim.step() def clip_grad_norm(self, model: nn.Module, max_norm: float): pass class NaiveAMPModel(nn.Module): r"""A wrapper class for model to cast the model into fp16 and automatically cast the input and output Args: model (torch.nn.Module): torch.nn.Module to be wrapped. output_to_fp32 (bool, optional): Whether cast output of this module into fp32. (Default: True) parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this module. (Default: ``ParallelMode.DATA``) sync_buffer (bool, optional): whether to synchronize buffer. (Default: True) Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. """ def __init__(self, model: nn.Module, output_to_fp32: bool = True, parallel_mode: ParallelMode = ParallelMode.DATA, sync_buffer: bool = True): super().__init__() self.model = model.half() self._output_to_fp32 = output_to_fp32 self._sync_buf = sync_buffer if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1: self._process_group = gpc.get_group(parallel_mode) self._world_size = gpc.get_world_size(parallel_mode) else: self._process_group = None self._world_size = 1 self._sync_buf = False self._first_eval_run = False @property def sync_buffer(self): return self._sync_buf @sync_buffer.setter def sync_buffer(self, state: bool): self._sync_buf = state def _convert_to_fp16(self, input_: Any): if isinstance(input_, Tensor) and input_.dtype == torch.float32: input_ = input_.half() return input_ def _convert_to_fp32(self, input_: Any): if isinstance(input_, Tensor) and input_.dtype == torch.float16: input_ = input_.float() return input_ def _reduce_module_buffer(self): """ All-reduce the buffers (e.g. running stats of batch normalization) across data parallel ranks so that all the ranks will produce consistent results when given the same input """ buf_list = [] # find valid buffers for buf in self.model.buffers(): if buf is not None: buf_list.append(buf) # reduce buffers across data parallel ranks if buf_list: coalesced_buf = _flatten_dense_tensors(buf_list) coalesced_buf.div_(self._world_size) dist.all_reduce(coalesced_buf, op=ReduceOp.SUM, group=self._process_group) unflattened_buf_list = _unflatten_dense_tensors(coalesced_buf, buf_list) for old, new in zip(buf_list, unflattened_buf_list): old.copy_(new) def eval(self): self.model.eval() # we only sync buffer in the first eval iteration # so that future eval iterations can be done without communication self._first_eval_run = True def forward(self, *args, **kwargs): # reduce buffers after forward will lead to error # as we cannot change the variables needed for gradient computation after forward # so we sync buffer before forward if (self.training or self._first_eval_run) and self._sync_buf: with torch.no_grad(): self._reduce_module_buffer() if self._first_eval_run: self._first_eval_run = False if args: args = [self._convert_to_fp16(arg) for arg in args] if kwargs: for k, v in kwargs.items(): kwargs[k] = self._convert_to_fp16(v) out = self.model(*args, **kwargs) if self._output_to_fp32: if isinstance(out, Tensor): out = self._convert_to_fp32(out) elif isinstance(out, (tuple, list)): out = [self._convert_to_fp32(val) for val in out] elif isinstance(out, dict): out = {key: self._convert_to_fp32(val) for key, val in out.items()} return out