import pytest import torch import torch.nn as nn import colossalai from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup from colossalai.testing import rerun_if_address_is_in_use, spawn from tests.test_tensor.common_utils import split_param_col_tp1d, split_param_row_tp1d, tensor_equal, tensor_shard_equal class Conv1D(nn.Module): """ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). Basically works like a linear layer but the weights are transposed. Args: nf (`int`): The number of output features. nx (`int`): The number of input features. """ def __init__(self, nf, nx): super().__init__() self.nf = nf w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.weight = nn.Parameter(w) self.bias = nn.Parameter(torch.ones(nf)) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(size_out) return x def run_with_spec(spec_init_func, split_bias): model = Conv1D(4, 16).cuda() world_size = torch.distributed.get_world_size() pg = ProcessGroup(tp_degree=world_size) weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg)) bias = ColoTensor(torch.nn.Parameter(model.bias.detach()), ColoTensorSpec(pg)) spec_init_func(weight, pg) if split_bias: spec_init_func(bias, pg) x = torch.rand(2, 16).cuda() out = model(x) colo_out = torch.addmm(bias, x, weight) colo_out = colo_out.to_replicate() assert tensor_equal(out, colo_out) grad = torch.rand_like(out) out.backward(grad) colo_out.backward(grad) tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size()) tensor_shard_equal(model.bias.grad, bias.grad, pg.tp_local_rank(), pg.tp_world_size()) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_with_spec(spec_init_func=split_param_row_tp1d, split_bias=False) run_with_spec(spec_init_func=split_param_col_tp1d, split_bias=True) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_addmm_1d(world_size): spawn(run_dist, world_size) if __name__ == '__main__': test_addmm_1d(4)