#!/usr/bin/env python # -*- encoding: utf-8 -*- import os from pathlib import Path import pytest import torch import torch.distributed as dist from torchvision import datasets, transforms import colossalai from colossalai.context import Config, ParallelMode from colossalai.core import global_context as gpc from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.utils import get_dataloader CONFIG = Config( dict( train_data=dict( dataset=dict( type='CIFAR10', root=Path(os.environ['DATA']), train=True, download=True, ), dataloader=dict(num_workers=2, batch_size=2, shuffle=True), ), parallel=dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None), ), seed=1024, )) def run_data_sampler(rank, world_size, port): dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost') colossalai.launch(**dist_args) # build dataset transform_pipeline = [transforms.ToTensor(), transforms.RandomCrop(size=32, padding=4)] transform_pipeline = transforms.Compose(transform_pipeline) dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline) # build dataloader dataloader = get_dataloader(dataset, batch_size=8, add_sampler=False) data_iter = iter(dataloader) img, label = data_iter.next() img = img[0] if gpc.get_local_rank(ParallelMode.DATA) != 0: img_to_compare = img.clone() else: img_to_compare = img dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) if gpc.get_local_rank(ParallelMode.DATA) != 0: # this is without sampler # this should be false if data parallel sampler to given to the dataloader assert torch.equal(img, img_to_compare), 'Same image was distributed across ranks and expected it to be the same' torch.cuda.empty_cache() @pytest.mark.cpu @rerun_if_address_is_in_use() def test_data_sampler(): spawn(run_data_sampler, 4) if __name__ == '__main__': test_data_sampler()