from dataclasses import dataclass import torch.distributed as dist from torch.distributed import ProcessGroup __all__ = ['ShardConfig'] @dataclass class ShardConfig: r""" The config for sharding the huggingface model Args: tensor_parallel_process_group (int): The process group for tensor parallelism, defaults to None, which is the global process group. enable_tensor_parallelism (bool): Whether to turn on tensor parallelism, default is True. enable_fused_normalization (bool): Whether to use fused layernorm, default is False. enable_all_optimization (bool): Whether to turn on all optimization, default is False. """ tensor_parallel_process_group: ProcessGroup = None enable_tensor_parallelism: bool = True enable_fused_normalization: bool = False enable_all_optimization: bool = False # TODO: add support for tensor parallel # pipeline_parallel_size: int # data_parallel_size: int # tensor_parallel_mode: Literal['1d', '2d', '2.5d', '3d'] # inference_only: bool = True # gather_output: bool = True @property def tensor_parallel_size(self): return self._tensor_parallel_size def __post_init__(self): if not self.enable_tensor_parallelism: self._tensor_parallel_size = 1 else: # get the parallel size self._tensor_parallel_size = dist.get_world_size(self.tensor_parallel_process_group) # turn on all optimization if all_optimization is set to True if self.enable_all_optimization: self._turn_on_all_optimization() def _turn_on_all_optimization(self): """ Turn on all optimization. """ # you can add all the optimization flag here self.enable_fused_normalization = True