import argparse import torch import torch.distributed as dist from transformers import LlamaForCausalLM, LlamaTokenizer import colossalai from colossalai.inference import InferenceEngine from colossalai.testing import spawn from colossalai.utils.device import get_current_device INPUT_TEXTS = [ "What is the longest river in the world?", "Explain the difference between process and thread in compouter science.", ] def run_inference(args): llama_model_path = args.model_path llama_tokenize_path = args.tokenizer_path or args.model_path max_input_len = args.max_input_len max_output_len = args.max_output_len max_batch_size = args.batch_size micro_batch_size = args.micro_batch_size tp_size = args.tp_size pp_size = args.pp_size rank = dist.get_rank() tokenizer = LlamaTokenizer.from_pretrained(llama_tokenize_path, padding_side="left") tokenizer.pad_token_id = tokenizer.eos_token_id if args.quant is None: model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.pad_token_id) elif args.quant == "gptq": from auto_gptq import AutoGPTQForCausalLM model = AutoGPTQForCausalLM.from_quantized( llama_model_path, inject_fused_attention=False, device=torch.cuda.current_device() ) elif args.quant == "smoothquant": from colossalai.inference.quant.smoothquant.models.llama import SmoothLlamaForCausalLM model = SmoothLlamaForCausalLM.from_quantized(llama_model_path, model_basename=args.smoothquant_base_name) model = model.cuda() engine = InferenceEngine( tp_size=tp_size, pp_size=pp_size, model=model, max_input_len=max_input_len, max_output_len=max_output_len, max_batch_size=max_batch_size, micro_batch_size=micro_batch_size, quant=args.quant, dtype=args.dtype, ) inputs = tokenizer(INPUT_TEXTS, return_tensors="pt", padding="longest", max_length=max_input_len, truncation=True) inputs = {k: v.to(get_current_device()) for k, v in inputs.items()} outputs = engine.generate(inputs) if rank == 0: output_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True) for input_text, output_text in zip(INPUT_TEXTS, output_texts): print(f"Input: {input_text}") print(f"Output: {output_text}") def run_tp_pipeline_inference(rank, world_size, port, args): colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_inference(args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-p", "--model_path", type=str, help="Model path", required=True) parser.add_argument("-i", "--input", default="What is the longest river in the world?") parser.add_argument("-t", "--tokenizer_path", type=str, help="Tokenizer path", default=None) parser.add_argument( "-q", "--quant", type=str, choices=["gptq", "smoothquant"], default=None, help="quantization type: 'gptq' or 'smoothquant'", ) parser.add_argument("--smoothquant_base_name", type=str, default=None, help="soothquant base name") parser.add_argument("--tp_size", type=int, default=1, help="Tensor parallel size") parser.add_argument("--pp_size", type=int, default=1, help="Pipeline parallel size") parser.add_argument("-b", "--batch_size", type=int, default=4, help="Maximum batch size") parser.add_argument("--max_input_len", type=int, default=2048, help="Maximum input length") parser.add_argument("--max_output_len", type=int, default=64, help="Maximum output length") parser.add_argument("--micro_batch_size", type=int, default=1, help="Micro batch size") parser.add_argument("--dtype", default="fp16", type=str) args = parser.parse_args() spawn(run_tp_pipeline_inference, nprocs=args.tp_size * args.pp_size, args=args)