from copy import deepcopy from functools import partial from tempfile import TemporaryDirectory from typing import Dict import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.checkpoint_io.io import load, save from colossalai.utils.checkpoint_io.meta import (ParamDistMeta, ParamRedistMeta, RankRedistMeta, RedistMeta) from torch import Tensor from torch.nn import Module from torch.optim import Adam, Optimizer def check_model_state_dict(a: Dict[str, Tensor], b: Dict[str, Tensor]) -> None: assert set(a.keys()) == set(b.keys()) for k, v in a.items(): assert torch.equal(v, b[k]) def check_optim_state_dict(a: dict, b: dict, ignore_param_gruops: bool = False) -> None: assert set(a['state'].keys()) == set(b['state'].keys()) for k, state in a['state'].items(): b_state = b['state'][k] for v1, v2 in zip(state.values(), b_state.values()): if isinstance(v1, Tensor): assert torch.equal(v1, v2) else: assert v1 == v2 if not ignore_param_gruops: assert a['param_groups'] == b['param_groups'] class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def prepare_model_optim(shard: bool = False, zero: bool = False): model = DummyModel() if shard: model.fc.weight.data = model.fc.weight.chunk(2, 1)[dist.get_rank() % 2] if zero: dp_rank = dist.get_rank() // 2 model.fc.weight.data = model.fc.weight.reshape(-1).split([3, model.fc.weight.size(1) - 3], 0)[dp_rank] if dp_rank != 0: model.fc.bias.data = torch.empty(0, dtype=model.fc.bias.dtype) for p in model.parameters(): p.grad = torch.rand_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() return model, optimizer def reset_model_optim(model: Module, optimizer: Optimizer, scalar: float = 0.0): with torch.no_grad(): for p in model.parameters(): p.fill_(scalar) for state in optimizer.state.values(): for v in state.values(): if isinstance(v, Tensor): v.fill_(scalar) def get_dist_metas(nprocs: int, zero: bool = False): dp_world_size = nprocs // 2 dist_metas = [] for rank in range(nprocs): if zero: dist_metas.append({ 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2], zero_numel=10, zero_orig_shape=[1, 10]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1, zero_numel=1, zero_orig_shape=[1]) }) else: dist_metas.append({ 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1) }) return dist_metas def get_redist_meta(nprocs: int): dp_world_size = nprocs // 2 rank_meta = { 'fc.weight': {rank: RankRedistMeta(rank // 2, rank % 2, 0) for rank in range(nprocs)}, 'fc.bias': {rank: RankRedistMeta(rank // 2, 0, 0) for rank in range(nprocs)} } param_meta = { 'fc.weight': ParamRedistMeta(dp_world_size, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamRedistMeta(dp_world_size, 1) } return RedistMeta(rank_meta, [], param_meta) @pytest.mark.parametrize('max_shard_size_gb', [80 / 1024**3, 0]) def test_save_global_load_global(max_shard_size_gb: float): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer, max_shard_size_gb=max_shard_size_gb) new_model, new_optimizer = prepare_model_optim() load(dir_name, new_model, new_optimizer, max_shard_size_gb=max_shard_size_gb) check_model_state_dict(model.state_dict(), new_model.state_dict()) check_optim_state_dict(optimizer.state_dict(), new_optimizer.state_dict()) def run_dist(rank, world_size, port, func): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') func() def launch_dist(fn, world_size: int): proc_fn = partial(run_dist, world_size=world_size, port=free_port(), func=fn) mp.spawn(proc_fn, nprocs=world_size) def save_dist(dir_name: str, zero: bool): model, optmizer = prepare_model_optim(shard=True, zero=zero) reset_model_optim(model, optmizer) world_size = dist.get_world_size() rank = dist.get_rank() save(dir_name, model, optmizer, dist_meta=get_dist_metas(world_size, zero)[rank]) def load_and_check_dist(dir_name: str): world_size = dist.get_world_size() model, optmizer = prepare_model_optim(shard=True) reset_model_optim(model, optmizer) model_state_dict = deepcopy(model.state_dict()) optimizer_state_dict = deepcopy(optmizer.state_dict()) reset_model_optim(model, optmizer, 1) load(dir_name, model, optmizer, get_redist_meta(world_size), get_dist_metas(world_size)) check_model_state_dict(model_state_dict, model.state_dict()) check_optim_state_dict(optimizer_state_dict, optmizer.state_dict()) @pytest.mark.dist @rerun_if_address_is_in_use() def test_save_global_load_dist(): model, optimizer = prepare_model_optim() reset_model_optim(model, optimizer) with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer) fn = partial(load_and_check_dist, dir_name) launch_dist(fn, 4) @pytest.mark.dist @rerun_if_address_is_in_use() def test_save_dist_load_dist(): with TemporaryDirectory() as dir_name: # save tp + dp fn = partial(save_dist, dir_name, False) launch_dist(fn, 2) # load tp + dp fn = partial(load_and_check_dist, dir_name) launch_dist(fn, 2) with TemporaryDirectory() as dir_name: # save tp + zero fn = partial(save_dist, dir_name, True) launch_dist(fn, 4) # load tp + dp fn = partial(load_and_check_dist, dir_name) launch_dist(fn, 2) launch_dist(fn, 4) if __name__ == '__main__': test_save_global_load_global(80 / 1024**3) test_save_global_load_global(0) test_save_global_load_dist() test_save_dist_load_dist()