from typing import Any, Dict, Iterator, Optional, Tuple, Union import torch from torch import nn from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup from colossalai.utils.model.utils import InsertPostInitMethodToModuleSubClasses # find named_params includes replica def _named_params_with_replica( module: nn.Module, prefix: str = '', recurse: bool = True, ) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]: modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)] for mod_prefix, mod in modules: for name, val in mod._parameters.items(): if val is None: continue name = mod_prefix + ('.' if mod_prefix else '') + name yield name, val def _convert_to_coloparam(param: torch.nn.Parameter, device: torch.device, dtype=torch.float, default_pg: Optional[ProcessGroup] = None, default_dist_spec: Optional[Any] = None) -> ColoParameter: if type(param) is ColoParameter: return param # detaching tensor is necessary for optimizers. requires_grad = param.requires_grad # param is the global tensor. if param.device.type == "meta": colo_param = ColoParameter(param, requires_grad=requires_grad) else: colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad) # if default_shard_plan exists, shard the param during initialization. # This can reduce the model size after initialization. # NOTE() embedding usually can not be correctly sharded. So I use except to handle # the param that can not be sharded by the default plan if default_pg is not None: colo_param.set_process_group(default_pg) if default_dist_spec is not None: try: colo_param.set_dist_spec(default_dist_spec) except: pass return colo_param def ColoModulize(module): """ Replacing the parameters() and named_parameters() with our customized ones """ module._colo_visited = True class ColoInitContext(InsertPostInitMethodToModuleSubClasses): def __init__(self, device: torch.device = torch.device('cpu'), dtype: torch.dtype = torch.float, default_pg: Optional[ProcessGroup] = None, default_dist_spec=None): """ Args: device (torch.device): the device where parameters initialized are resident. Defaults to torch.device('cpu'). dtype (torch.dtype): the dtype of parameters initialized. Defaults to torch.float. default_pg (ProcessGroup): the default process group for all initialized parameters. default_dist_spec: the default distributed specifications. """ super().__init__() self._device = device self._dtype = dtype self._register_colo_modules() self._default_pg = default_pg self._default_dist_spec = default_dist_spec def _register_colo_modules(self): from colossalai.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module register_colo_module(torch.nn.Linear, ColoLinear()) register_colo_module(torch.nn.Embedding, ColoEmbedding()) def _pre_context_exec(self): pass def _post_init_method(self, module: torch.nn.Module, *args, **kwargs): """ The function to call at the end of the constructor of each module. FIXME(fjr) The module may be passed to this function multiple times? """ name_list = [] for name, param in _named_params_with_replica(module): if type(param) is ColoParameter: continue split = name.rfind('.') if split >= 0: # param in submodule module_name = name[:split] param_name = name[split + 1:] else: module_name = '' # param in current module param_name = name name_list.append((module_name, param_name)) replaced_tensors = dict( ) # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference for module_name, param_name in name_list: submodule = module.get_submodule(module_name) param = submodule.get_parameter(param_name) if param in replaced_tensors: colo_param = replaced_tensors[param] else: colo_param = _convert_to_coloparam(param, self._device, self._dtype, self._default_pg, self._default_dist_spec) replaced_tensors[param] = colo_param delattr(submodule, param_name) setattr(submodule, param_name, colo_param) colo_param.shared_param_modules.append(submodule) param_number = 0 meta_param_number = 0 buffer_number = 0 meta_buffer_number = 0 for param in module.parameters(): param_number += 1 meta_param_number += (param.device.type == 'meta') for buffer in module.buffers(): buffer_number += 1 meta_buffer_number += (buffer.device.type == 'meta') if meta_param_number > 0 and meta_param_number != param_number: raise ValueError("Meta parameters and valued parameters can not be in the same model") if meta_buffer_number > 0 and meta_buffer_number != buffer_number: raise ValueError("Meta buffers and valued buffers can not be in the same model") if meta_buffer_number == 0: for buffer in module.buffers(): buffer.data = buffer.data.to(device=self._device) def post_process_colo_init_ctx(model: torch.nn.Module, device: torch.device = torch.device('cpu'), dtype: torch.dtype = torch.float, default_pg: Optional[ProcessGroup] = None, default_dist_spec=None): """post_process_colo_init_ctx This function is called after `ColoInitContext`. Args: model (torch.nn.module): the model device (torch.device, optional): device type of the model params. Defaults to torch.device('cpu'). dtype (torch.dtype, optional): dtype of the model params. Defaults to torch.float. default_pg (Optional[ProcessGroup], optional): default process group. Defaults to None. Indicates a DP-only process group. default_dist_spec (Any, optional): default dist spec of params. Defaults to None. Raises: RuntimeError: raise error if """ torch_params = [] for n, p in model.named_parameters(): if not isinstance(p, ColoParameter): # print(f"{n} is not a ColoParameter. We are going to converting it to ColoParameter") torch_params.append((n, p)) for (n, param) in torch_params: name_list = n.split('.') module = model for i in range(len(name_list) - 1): module = module._modules[name_list[i]] delattr(module, name_list[-1]) setattr(module, name_list[-1], _convert_to_coloparam(param, device, dtype, default_pg, default_dist_spec)) del torch_params for n, p in model.named_parameters(): if not isinstance(p, ColoTensor): raise RuntimeError