/*This code from NVIDIA Megatron: * with minor changes. */ #include #include #include #include #include #include #include #include #include #include #include #include "common/micros.h" #include "utils/vec_copy.h" #include "funcs/reduce_function.h" #include "funcs/unary_functor.h" using colossalAI::funcs::UnaryOpFunctor; using colossalAI::funcs::UnaryOpType; using colossalAI::funcs::warp_reduce; using colossalAI::funcs::ReduceType; using colossalAI::cuda::utils::copy; /* * Extended softmax (from native aten pytorch) with following additional * features 1) input scaling 2) Explicit masking */ template __global__ void scaled_masked_softmax_warp_forward( output_t *dst, const input_t *src, const uint8_t *mask, const acc_t scale, int micro_batch_size, int element_count, int pad_batches) { // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and // warp_size of method warp_softmax_forward_kernel. constexpr int next_power_of_two = 1 << log2_elements; constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE; constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1; constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4; // blockDim/threadIdx = (WARP_SIZE, WARPS_PER_BLOCK, ) // gridDim/blockIdx = (seq_len, attn_heads, batches) int first_batch = (blockDim.y * (blockIdx.x + gridDim.x * (blockIdx.y + gridDim.y * blockIdx.z)) + threadIdx.y) * WARP_BATCH; int pad_first_batch = 0; if (pad_batches != 1) { // bert style pad_first_batch = (blockDim.y * (blockIdx.x + gridDim.x * blockIdx.z) + threadIdx.y) * WARP_BATCH; } else { // gpt2 style pad_first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH; } // micro_batch_size might not be a multiple of WARP_BATCH. Check how // many batches have to computed within this WARP. int local_batches = micro_batch_size - first_batch; if (local_batches > WARP_BATCH) local_batches = WARP_BATCH; // there might be multiple batches per warp. compute the index within the // batch int local_idx = threadIdx.x; src += first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx; dst += first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx; mask += pad_first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx; // load data from global memory acc_t elements[WARP_BATCH][WARP_ITERATIONS]; input_t temp_data[ELEMENTS_PER_LDG_STG]; uint8_t temp_mask[ELEMENTS_PER_LDG_STG]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { int batch_element_count = (i >= local_batches) ? 0 : element_count; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) { int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE; if (element_index < batch_element_count) { int itr_idx = i * element_count + it * WARP_SIZE; copy(src + itr_idx, temp_data); copy(mask + itr_idx, temp_mask); #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { if (temp_mask[element] != 1) { elements[i][it + element] = (acc_t)temp_data[element] * scale; } else { elements[i][it + element] = -10000.0; } } } else { #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { elements[i][it + element] = -std::numeric_limits::infinity(); } } } } // compute max_value acc_t max_value[WARP_BATCH]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { max_value[i] = elements[i][0]; #pragma unroll for (int it = 1; it < WARP_ITERATIONS; ++it) { max_value[i] = (max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it]; } } warp_reduce(max_value); acc_t sum[WARP_BATCH]{0.0f}; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { #pragma unroll for (int it = 0; it < WARP_ITERATIONS; ++it) { elements[i][it] = std::exp((elements[i][it] - max_value[i])); sum[i] += elements[i][it]; } } warp_reduce(sum); // store result output_t out[ELEMENTS_PER_LDG_STG]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { if (i >= local_batches) break; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) { int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE; if (element_index < element_count) { #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { out[element] = elements[i][it + element] / sum[i]; } copy( out, dst + i * element_count + it * WARP_SIZE); } else { break; } } } } template __global__ void scaled_masked_softmax_warp_backward( output_t *gradInput, input_t *grad, const input_t *output, acc_t scale, int micro_batch_size, int element_count) { // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and // warp_size of method warp_softmax_backward_kernel. constexpr int next_power_of_two = 1 << log2_elements; constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE; constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1; constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4; // blockDim/threadIdx = (WARP_SIZE, WARPS_PER_BLOCK, ) // gridDim/blockIdx = (seq_len, attn_heads, batches) int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH; // micro_batch_size might not be a multiple of WARP_BATCH. Check how // many batches have to computed within this WARP. int local_batches = micro_batch_size - first_batch; if (local_batches > WARP_BATCH) local_batches = WARP_BATCH; // there might be multiple batches per warp. compute the index within the // batch int local_idx = threadIdx.x; // the first element to process by the current thread int thread_offset = first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx; grad += thread_offset; output += thread_offset; gradInput += thread_offset; // load data from global memory acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS]{0.0f}; acc_t output_reg[WARP_BATCH][WARP_ITERATIONS]{0.0f}; input_t temp_grad[ELEMENTS_PER_LDG_STG]; input_t temp_output[ELEMENTS_PER_LDG_STG]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { int batch_element_count = (i >= local_batches) ? 0 : element_count; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) { int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE; if (element_index < batch_element_count) { copy( grad + i * element_count + it * WARP_SIZE, temp_grad); copy( output + i * element_count + it * WARP_SIZE, temp_output); #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { output_reg[i][it + element] = (acc_t)temp_output[element]; } #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { grad_reg[i][it + element] = (acc_t)temp_grad[element] * output_reg[i][it + element]; } } } } acc_t sum[WARP_BATCH]; #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { sum[i] = grad_reg[i][0]; #pragma unroll for (int it = 1; it < WARP_ITERATIONS; ++it) { sum[i] += grad_reg[i][it]; } } warp_reduce(sum); // store result #pragma unroll for (int i = 0; i < WARP_BATCH; ++i) { if (i >= local_batches) break; #pragma unroll for (int it = 0; it < WARP_ITERATIONS; it += ELEMENTS_PER_LDG_STG) { int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE; if (element_index < element_count) { // compute gradients output_t out[ELEMENTS_PER_LDG_STG]; #pragma unroll for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) { out[element] = (output_t)(scale * (grad_reg[i][it + element] - output_reg[i][it + element] * sum[i])); } copy( out, gradInput + i * element_count + it * WARP_SIZE); } } } } int get_batch_per_block(int query_seq_len, int key_seq_len, int batches, int attn_heads) { int log2_elements = UnaryOpFunctor()(key_seq_len); const int next_power_of_two = 1 << log2_elements; int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1; constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; return batches_per_block; } template void dispatch_scaled_masked_softmax_forward(output_t *dst, const input_t *src, const uint8_t *mask, const input_t scale, int query_seq_len, int key_seq_len, int batches, int attn_heads, int pad_batches) { TORCH_INTERNAL_ASSERT(key_seq_len >= 0 && key_seq_len <= 2048); if (key_seq_len == 0) { return; } else { int log2_elements = UnaryOpFunctor()(key_seq_len); const int next_power_of_two = 1 << log2_elements; int batch_count = batches * attn_heads * query_seq_len; // This value must match the WARP_SIZE constexpr value computed inside // softmax_warp_forward. int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; // This value must match the WARP_BATCH constexpr value computed inside // softmax_warp_forward. int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1; // use 128 threads per block to maximimize gpu utilization constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; TORCH_INTERNAL_ASSERT(query_seq_len % batches_per_block == 0); dim3 blocks(query_seq_len / batches_per_block, attn_heads, batches); dim3 threads(warp_size, warps_per_block, 1); // Launch code would be more elegant if C++ supported FOR CONSTEXPR switch (log2_elements) { case 0: // 1 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 1: // 2 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 2: // 4 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 3: // 8 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 4: // 16 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 5: // 32 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 6: // 64 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 7: // 128 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 8: // 256 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 9: // 512 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 10: // 1024 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; case 11: // 2048 scaled_masked_softmax_warp_forward <<>>( dst, src, mask, scale, batch_count, key_seq_len, pad_batches); break; default: break; } } } template void dispatch_scaled_masked_softmax_backward(output_t *grad_input, input_t *grad, const input_t *output, const acc_t scale, int query_seq_len, int key_seq_len, int batches, int attn_heads) { TORCH_INTERNAL_ASSERT(key_seq_len >= 0 && key_seq_len <= 2048); if (key_seq_len == 0) { return; } else { int log2_elements = UnaryOpFunctor()(key_seq_len); const int next_power_of_two = 1 << log2_elements; int batch_count = batches * attn_heads * query_seq_len; // This value must match the WARP_SIZE constexpr value computed inside // softmax_warp_backward. int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE; // This value must match the WARP_BATCH constexpr value computed inside // softmax_warp_backward. int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1; // use 128 threads per block to maximimize gpu utilization constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; int blocks = batch_count / batches_per_block; dim3 threads(warp_size, warps_per_block, 1); // Launch code would be more elegant if C++ supported FOR CONSTEXPR switch (log2_elements) { case 0: // 1 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 1: // 2 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 2: // 4 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 3: // 8 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 4: // 16 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 5: // 32 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 6: // 64 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 7: // 128 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 8: // 256 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 9: // 512 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 10: // 1024 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; case 11: // 2048 scaled_masked_softmax_warp_backward <<>>( grad_input, grad, output, scale, batch_count, key_seq_len); break; default: break; } } } torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& mask, float scale_factor) { // input is a 4d tensor with dimensions [batches, attn_heads, seq_len, // seq_len] const int batches = input.size(0); const int pad_batches = mask.size(0); const int attn_heads = input.size(1); const int query_seq_len = input.size(2); const int key_seq_len = input.size(3); TORCH_INTERNAL_ASSERT(key_seq_len <= 2048); TORCH_INTERNAL_ASSERT(query_seq_len > 1); TORCH_INTERNAL_ASSERT(pad_batches == 1 || pad_batches == batches); TORCH_INTERNAL_ASSERT(mask.size(1) == 1); TORCH_INTERNAL_ASSERT(mask.size(2) == query_seq_len); TORCH_INTERNAL_ASSERT(mask.size(3) == key_seq_len); // Output auto act_options = input.options().requires_grad(false); torch::Tensor softmax_results = torch::empty( {batches, attn_heads, query_seq_len, key_seq_len}, act_options); // Softmax Intermediate Result Ptr void* input_ptr = static_cast(input.data_ptr()); void* mask_ptr = static_cast(mask.data_ptr()); void* softmax_results_ptr = static_cast(softmax_results.data_ptr()); DISPATCH_HALF_AND_BFLOAT( input.scalar_type(), "dispatch_scaled_masked_softmax_forward", dispatch_scaled_masked_softmax_forward( reinterpret_cast(softmax_results_ptr), reinterpret_cast(input_ptr), reinterpret_cast(mask_ptr), scale_factor, query_seq_len, key_seq_len, batches, attn_heads, pad_batches);); return softmax_results; } torch::Tensor bwd_cuda(torch::Tensor const& output_grads_, torch::Tensor const& softmax_results_, float scale_factor) { auto output_grads = output_grads_.contiguous(); auto softmax_results = softmax_results_.contiguous(); // output grads is a 4d tensor with dimensions [batches, attn_heads, seq_len, // seq_len] const int batches = output_grads.size(0); const int attn_heads = output_grads.size(1); const int query_seq_len = output_grads.size(2); const int key_seq_len = output_grads.size(3); void* output_grads_ptr = static_cast(output_grads.data_ptr()); // Softmax Grad DISPATCH_HALF_AND_BFLOAT( output_grads_.scalar_type(), "dispatch_scaled_masked_softmax_backward", dispatch_scaled_masked_softmax_backward( reinterpret_cast(output_grads_ptr), reinterpret_cast(output_grads_ptr), reinterpret_cast(softmax_results.data_ptr()), scale_factor, query_seq_len, key_seq_len, batches, attn_heads);); // backward pass is completely in-place return output_grads; }