from typing import Optional import torch import torch.distributed as dist from colossalai.registry import OPHOOKS from colossalai.utils import get_current_device from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector from colossalai.zero.shard_utils import BaseShardStrategy from ._base_ophook import BaseOpHook from colossalai.utils.memory_utils.utils import colo_model_data_tensor_move_inline @OPHOOKS.register_module class ZeroHook(BaseOpHook): """ A hook to process sharded param for ZeRO method. """ def __init__(self, shard_strategy: BaseShardStrategy, memstarts_collector: Optional[MemStatsCollector], process_group: Optional[dist.ProcessGroup] = None): super().__init__() self.shard_strategy = shard_strategy self.process_group = process_group # NOTE(jiaruifang) Now the computing device of FWD and BWD is always on GPU self.computing_device = torch.device(f'cuda:{get_current_device()}') self._memstarts_collector = memstarts_collector def pre_fwd_exec(self, module: torch.nn.Module, *args): tensor_list = [] for param in module.parameters(recurse=False): assert hasattr(param, 'col_attr') tensor_list.append(param.col_attr.sharded_data_tensor) self.shard_strategy.gather(tensor_list, self.process_group) for param in module.parameters(recurse=False): colo_model_data_tensor_move_inline(param.col_attr.sharded_data_tensor, self.computing_device) param.data = param.col_attr.sharded_data_tensor.payload if self._memstarts_collector: self._memstarts_collector.sample_memstats() def post_fwd_exec(self, module: torch.nn.Module, *args): tensor_list = [] for param in module.parameters(recurse=False): assert hasattr(param, 'col_attr') tensor_list.append(param.col_attr.sharded_data_tensor) self.shard_strategy.shard(tensor_list, self.process_group) for param in module.parameters(recurse=False): param.col_attr.remove_torch_payload() def pre_bwd_exec(self, module: torch.nn.Module, input, output): tensor_list = [] for param in module.parameters(recurse=False): assert hasattr(param, 'col_attr') tensor_list.append(param.col_attr.sharded_data_tensor) self.shard_strategy.gather(tensor_list, self.process_group) for param in module.parameters(recurse=False): colo_model_data_tensor_move_inline(param.col_attr.sharded_data_tensor, self.computing_device) param.data = param.col_attr.sharded_data_tensor.payload # Store local accumulated grad shard if param.grad is not None: if param.col_attr.bwd_count == 0: # We haven't stored local accumulated grad yet assert param.col_attr.fp32_grad is None param.col_attr.fp32_grad = param.grad.data param.grad = None else: # We have stored local accumulated grad # The grad here must be locally computed full grad in this backward pass assert param.grad.shape == param.col_attr.sharded_data_tensor.origin_shape param.col_attr.bwd_count += 1 if self._memstarts_collector: self._memstarts_collector.sample_memstats() def post_bwd_exec(self, module: torch.nn.Module, input): tensor_list = [] for param in module.parameters(recurse=False): assert hasattr(param, 'col_attr') tensor_list.append(param.col_attr.sharded_data_tensor) self.shard_strategy.shard(tensor_list, self.process_group) for param in module.parameters(recurse=False): param.col_attr.remove_torch_payload() def pre_iter(self): pass def post_iter(self): pass