import argparse import torch import torch.distributed as dist from transformers import LlamaForCausalLM, LlamaTokenizer import colossalai from colossalai.inference import InferenceEngine from colossalai.testing import spawn def run_inference(args): llama_model_path = args.model_path llama_tokenize_path = args.tokenizer_path max_input_len = args.max_input_len max_output_len = args.max_output_len max_batch_size = args.batch_size micro_batch_size = args.micro_batch_size tp_size = args.tp_size pp_size = args.pp_size rank = dist.get_rank() tokenizer = LlamaTokenizer.from_pretrained(llama_tokenize_path, padding_side="left") tokenizer.pad_token_id = tokenizer.unk_token_id if args.quant is None: model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.unk_token_id) model = model.half() elif args.quant == "gptq": from auto_gptq import AutoGPTQForCausalLM model = AutoGPTQForCausalLM.from_quantized( llama_model_path, inject_fused_attention=False, device=torch.cuda.current_device() ) elif args.quant == "smoothquant": from colossalai.inference.quant.smoothquant.models.llama import SmoothLlamaForCausalLM model = SmoothLlamaForCausalLM.from_quantized(llama_model_path, model_basename=args.smoothquant_base_name) model = model.cuda() engine = InferenceEngine( tp_size=tp_size, pp_size=pp_size, model=model, max_input_len=max_input_len, max_output_len=max_output_len, micro_batch_size=micro_batch_size, quant=args.quant, ) input_tokens = { "input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"), "attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"), } outputs = engine.generate(input_tokens) if rank == 0: print(tokenizer.batch_decode(outputs)) def run_tp_pipeline_inference(rank, world_size, port, args): colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_inference(args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-p", "--model_path", type=str, help="Model path", required=True) parser.add_argument("--tokenizer_path", type=str, help="Tokenizer path", required=True) parser.add_argument( "-q", "--quant", type=str, choices=["gptq", "smoothquant"], default=None, help="quantization type: 'gptq' or 'smoothquant'", ) parser.add_argument("--smoothquant_base_name", type=str, default=None, help="soothquant base name") parser.add_argument("-tp", "--tp_size", type=int, default=2, help="Tensor parallel size") parser.add_argument("-pp", "--pp_size", type=int, default=2, help="Pipeline parallel size") parser.add_argument("-b", "--batch_size", type=int, default=4, help="Maximum batch size") parser.add_argument("--max_input_len", type=int, default=32, help="Maximum input length") parser.add_argument("--max_output_len", type=int, default=16, help="Maximum output length") parser.add_argument("--micro_batch_size", type=int, default=1, help="Micro batch size") args = parser.parse_args() spawn(run_tp_pipeline_inference, nprocs=args.tp_size * args.pp_size, args=args)