from .utils import InsertPostInitMethodToModuleSubClasses import torch from colossalai.tensor import ColoTensor, ColoParameter from colossalai.nn.parallel.layers import register_colo_module, \ ColoLinear, ColoEmbedding from torch import nn from typing import Iterator, Tuple, Union # find named_params includes replica def _named_params_with_replica( module: nn.Module, prefix: str = '', recurse: bool = True, ) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]: modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)] for mod_prefix, mod in modules: for name, val in mod._parameters.items(): if val is None: continue name = mod_prefix + ('.' if mod_prefix else '') + name yield name, val def ColoModulize(module): """ Replacing the parameters() and named_parameters() with our customized ones """ module._colo_visited = True class ColoInitContext(InsertPostInitMethodToModuleSubClasses): def __init__(self, lazy_memory_allocate: bool = False, device: torch.device = torch.device('cpu'), dtype: torch.dtype = torch.float): """ Args: lazy_memory_allocate (bool, optional): whether to allocate memory for the parameter tensors. Defaults to False. device (torch.device, optional): the device parameters initialized are resident on. Defaults to torch.device('cpu'). """ super().__init__() self._lazy_memory_allocate = lazy_memory_allocate self._device = device self._dtype = dtype self._register_colo_modules() def _register_colo_modules(self): register_colo_module(torch.nn.Linear, ColoLinear()) register_colo_module(torch.nn.Embedding, ColoEmbedding()) def _pre_context_exec(self): pass def _post_init_method(self, module: torch.nn.Module, *args, **kwargs): """ The function to call at the end of the constructor of each module. FIXME(fjr) The module may be passed to this function multiple times? """ if hasattr(module, '_colo_visited'): return name_list = [] for name, param in _named_params_with_replica(module): if isinstance(param, ColoTensor): continue split = name.rfind('.') if split >= 0: # param in submodule module_name = name[:split] param_name = name[split + 1:] else: module_name = '' # param in current module param_name = name name_list.append((module_name, param_name)) replaced_tensors = dict( ) # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference for module_name, param_name in name_list: submodule = module.get_submodule(module_name) param = submodule.get_parameter(param_name) if param in replaced_tensors: colo_param = replaced_tensors[param] else: save_torch_payload = True if not self._lazy_memory_allocate else False # detaching tensor is necessary for optimizers. requires_grad = param.requires_grad # TODO(jiaruifang) we initialize a Default PG memory colo_param = ColoParameter(param.to(device=self._device, dtype=self._dtype), requires_grad=requires_grad) # add mapping record replaced_tensors[param] = colo_param delattr(submodule, param_name) setattr(submodule, param_name, colo_param) colo_param.shared_param_modules.append(submodule) module.to(self._device) ColoModulize(module)