import torch from torch.fx import GraphModule import torch.nn as nn import pytest from colossalai.fx.proxy import ColoProxy from colossalai.fx.tracer.tracer import ColoTracer from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec from colossalai.auto_parallel.solver.op_handler.conv_handler import CONV_STRATEGIES_LIST from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector from colossalai.device.device_mesh import DeviceMesh from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor from colossalai.auto_parallel.solver.options import SolverOptions from copy import deepcopy class ConvModel(nn.Module): def __init__(self, c_in, c_out): super().__init__() self.conv = nn.Conv2d(c_in, c_out, kernel_size=3) def forward(self, x): x = x * 2 x = self.conv(x) return x def test_strategies_constructor(): physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) entire_shape = torch.Size((4, 16, 64, 64)) tracer = ColoTracer() model = ConvModel(16, 32) input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')} # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {}) # %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {}) # return conv graph = tracer.trace(root=model, meta_args=input_sample) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() solver_options = SolverOptions(fast=True) strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) assert strategies_constructor.leaf_strategies == [] assert strategies_constructor.strategy_map == {} strategies_constructor.build_strategies_and_cost() # check leaf_strategies # In fast mode, placeholder node only has replica strategy. assert strategies_constructor.leaf_strategies[0][0].name == 'Replica Placeholder' # Second node is mul which is a element-wise node, therefore the output sharding spec is same as input sharding spec. assert strategies_constructor.leaf_strategies[1][0].name == '[R, R, R, R] -> [R, R, R, R]' # Third node is conv. conv_check_list = deepcopy(CONV_STRATEGIES_LIST) for strategy in strategies_constructor.leaf_strategies[2]: conv_check_list.remove(strategy.name) assert len(conv_check_list) == 0 # In fast mode, output node only has replica strategy. assert strategies_constructor.leaf_strategies[3][0].name == 'Replica Output' # check strategy_map nodes = [node for node in graph.nodes] # In fast mode, placeholder node only has replica strategy. x = nodes[0] assert strategies_constructor.strategy_map[x][0].name == 'Replica Placeholder' # Second node is mul which is a element-wise node, therefore the output sharding spec is same as input sharding spec. mul = nodes[1] assert strategies_constructor.strategy_map[mul][0].name == '[R, R, R, R] -> [R, R, R, R]' # Third node is conv. conv = nodes[2] conv_check_list = deepcopy(CONV_STRATEGIES_LIST) for strategy in strategies_constructor.strategy_map[conv]: conv_check_list.remove(strategy.name) assert len(conv_check_list) == 0 # In fast mode, output node only has replica strategy. output = nodes[3] assert strategies_constructor.strategy_map[output][0].name == 'Replica Output' if __name__ == '__main__': test_strategies_constructor()