from functools import partial
from time import time

import psutil
import torch
import torch.nn as nn
from packaging import version

import colossalai
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.parallel import ZeroDDP
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec
from colossalai.utils import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.zero import ZeroOptimizer
from transformers import GPT2Config, GPT2LMHeadModel


def parse_args():
    parser = colossalai.get_default_parser()
    parser.add_argument(
        "--tp_degree",
        type=int,
        default=1,
        help="Tensor Parallelism Degree.",
    )
    parser.add_argument(
        "--placement",
        type=str,
        default='cpu',
        help="Placement Policy for Gemini.",
    )
    args = parser.parse_args()
    return args


## Parameter Sharding Strategies for Tensor Parallelism
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
    spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
    if param.process_group.tp_world_size() == 1:
        param.set_process_group(pg)
    param.set_tensor_spec(*spec)


def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
    split_param_single_dim_tp1d(0, param, pg)


def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
    split_param_single_dim_tp1d(-1, param, pg)


## Define the Model and Loss Based on Huggingface transformers GPT2LMHeadModel
class GPTLMModel(nn.Module):

    def __init__(self,
                 hidden_size=768,
                 num_layers=12,
                 num_attention_heads=12,
                 max_seq_len=1024,
                 vocab_size=50257,
                 checkpoint=False):
        super().__init__()
        self.checkpoint = checkpoint
        self.model = GPT2LMHeadModel(
            GPT2Config(n_embd=hidden_size,
                       n_layer=num_layers,
                       n_head=num_attention_heads,
                       n_positions=max_seq_len,
                       n_ctx=max_seq_len,
                       vocab_size=vocab_size))
        if checkpoint:
            self.model.gradient_checkpointing_enable()

    def forward(self, input_ids, attention_mask):
        # Only return lm_logits
        return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]


class GPTLMLoss(nn.Module):

    def __init__(self):
        super().__init__()
        self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, logits, labels):
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        # Flatten the tokens
        return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))


## Randomly Generated Data
def get_data(batch_size, seq_len, vocab_size):
    input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
    attention_mask = torch.ones_like(input_ids)
    return input_ids, attention_mask


def gpt2_medium(checkpoint=False):
    return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)


def gpt2_xl(checkpoint=True):
    return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)


def gpt2_10b(checkpoint=True):
    return GPTLMModel(hidden_size=4096, num_layers=50, num_attention_heads=16, checkpoint=checkpoint)


def get_cpu_mem():
    return psutil.Process().memory_info().rss / 1024**2


def get_gpu_mem():
    return torch.cuda.memory_allocated() / 1024**2


def get_mem_info(prefix=''):
    return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'


def get_tflops(model_numel, batch_size, seq_len, step_time):
    return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)


# Tensor Parallel
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
    """tensor_parallelize
    Sharding the Model Parameters.

    Args:
        model (torch.nn.Module): a torch module to be sharded
    """
    for mn, module in model.named_modules():
        for pn, param in module.named_parameters(recurse=False):
            # set process group for all parameters
            param.set_process_group(pg)

            if 'mlp.c_fc' in mn:
                if 'weight' in pn or 'bias' in pn:
                    split_param_col_tp1d(param, pg)    # colmn slice
                    # keep the shape of the output from c_fc
                    param.compute_spec.set_output_replicate(False)
            elif 'mlp.c_proj' in mn:
                if 'weight' in pn:
                    split_param_row_tp1d(param, pg)    # row slice
            elif 'wte' in mn or 'wpe' in mn:
                split_param_col_tp1d(param, pg)    # colmn slice
            elif 'c_attn' in mn or 'c_proj' in mn:
                split_param_col_tp1d(param, pg)    # colmn slice


# Gemini + ZeRO DDP
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
    cai_version = colossalai.__version__
    if version.parse(cai_version) > version.parse("0.1.10"):
        from colossalai.nn.parallel import GeminiDDP
        model = GeminiDDP(model,
                          device=get_current_device(),
                          placement_policy=placememt_policy,
                          pin_memory=True,
                          search_range_mb=32)
    elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
        from colossalai.gemini import ChunkManager, GeminiManager
        chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
        gemini_manager = GeminiManager(placememt_policy, chunk_manager)
        chunk_manager = ChunkManager(chunk_size,
                                     pg,
                                     enable_distributed_storage=True,
                                     init_device=GeminiManager.get_default_device(placememt_policy))
        model = ZeroDDP(model, gemini_manager)
    else:
        raise NotImplemented(f"CAI version {cai_version} is not supported")
    return model


def main():
    args = parse_args()

    BATCH_SIZE = 8
    SEQ_LEN = 1024
    VOCAB_SIZE = 50257
    NUM_STEPS = 10

    disable_existing_loggers()
    colossalai.launch_from_torch(config={})

    pg = ProcessGroup(tp_degree=args.tp_degree)

    logger = get_dist_logger()
    logger.info(get_mem_info(), ranks=[0])

    # build GPT model
    with ColoInitContext(device=get_current_device()):
        model = gpt2_medium(checkpoint=True)

    numel = sum([p.numel() for p in model.parameters()])
    logger.info(f'Model numel: {numel}', ranks=[0])
    get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)

    # Tensor Parallelism (TP)
    tensor_parallelize(model, pg)
    # Gemini + ZeRO DP, Note it must be used after TP
    model = gemini_zero_dpp(model, pg, args.placement)
    logger.info(get_mem_info(prefix='After init model, '), ranks=[0])

    # build criterion
    criterion = GPTLMLoss()

    # build optimizer
    optimizer = HybridAdam(model.parameters(), lr=1e-3)
    optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**5)
    logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])

    torch.cuda.synchronize()
    model.train()
    for n in range(NUM_STEPS):
        # we just use randomly generated data here
        input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
        optimizer.zero_grad()
        start = time()
        outputs = model(input_ids, attn_mask)
        loss = criterion(outputs, input_ids)
        logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Forward '), ranks=[0])
        optimizer.backward(loss)
        logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Backward '), ranks=[0])
        optimizer.step()
        logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Optimizer step '), ranks=[0])
        step_time = time() - start
        logger.info(
            f'[{n+1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}',
            ranks=[0])

    torch.cuda.synchronize()


if __name__ == '__main__':
    main()