import torch from transformers.cache_utils import DynamicCache from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.models.llama.configuration_llama import LlamaConfig from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb from colossalai.inference.modeling.layers.attention import PagedAttention, convert_kvcache, copy_to_cache def test_copy_to_cache(): key = torch.ones((2, 11, 3, 3)) key[0, 9, :, :] = 0 key[1, -2:, :, :] = 0 cache = torch.zeros(8, 3, 8, 3) block_tables = torch.tensor([[0, 1], [2, 3]]) lengths = torch.tensor([9, 8]) cache = copy_to_cache(key, cache=cache, lengths=lengths, block_tables=block_tables, type="prefill") assert cache[1, 0, 0, 0] == 1 assert cache[3, 0, 0, 0] == 0 decoding_key = torch.ones((2, 1, 3, 3)) cache = copy_to_cache(decoding_key, cache=cache, lengths=lengths + 1, block_tables=block_tables, type="decoding") assert cache[1, 0, 0, 1] == 1 assert cache[3, 0, 0, 0] == 1 def test_convert_kvcache(): cache = torch.ones(8, 3, 8, 3) key = torch.ones(2, 1, 3, 3) + 1 lengths = torch.tensor([10, 9]) block_tables = torch.tensor([[0, 1], [2, 3]]) copy_to_cache(key, cache=cache, lengths=lengths, block_tables=block_tables, type="decoding") converted_cache = convert_kvcache(cache=cache, lengths=lengths, block_tables=block_tables) assert converted_cache.shape == (2, 10, 3, 3) def test_context_attention(): """ test config: head_num = 4, head_size = 4 """ attn = PagedAttention() q = k = v = torch.randn(8, 4, 4) k_cache = torch.empty(8, 4, 8, 4) v_cache = torch.empty(8, 4, 8, 4) context_lengths = torch.tensor( [ 8, ] ) block_tables = torch.tensor([[0, 1]]) attn.nopad_context_forward(q, k, v, k_cache, v_cache, context_lengths, block_tables) # test padded q/k/v pad_q = pad_k = pad_v = q.unsqueeze(0) attn.pad_context_forward(pad_q, pad_k, pad_v, k_cache, v_cache, context_lengths, block_tables) config = LlamaConfig(num_attention_heads=4, num_key_value_heads=None, hidden_size=16) transformer_attn = LlamaAttention(config) transformer_attn.training = False # test accuracy with LlamaAttention hidden_states = torch.randn(1, 8, 16) proj_q = transformer_attn.q_proj(hidden_states).view(1, 8, 4, 4).transpose(1, 2) proj_k = transformer_attn.k_proj(hidden_states).view(1, 8, 4, 4).transpose(1, 2) proj_v = transformer_attn.v_proj(hidden_states).view(1, 8, 4, 4).transpose(1, 2) position_ids = torch.arange(0, 8, dtype=torch.long, device=proj_q.device) position_ids = position_ids.unsqueeze(0) cos, sin = transformer_attn.rotary_emb(proj_v, 8) proj_q, proj_k = apply_rotary_pos_emb(proj_q, proj_k, cos, sin, position_ids) pad_attn_output = attn.pad_context_forward( proj_q.transpose(1, 2), proj_k.transpose(1, 2), proj_v.transpose(1, 2), k_cache, v_cache, context_lengths, block_tables, ) pad_attn_output = transformer_attn.o_proj(pad_attn_output) attn_mask = AttentionMaskConverter._make_causal_mask( hidden_states.shape[:2], q.dtype, q.device, past_key_values_length=0 ) attn_mask += PagedAttention.generate_padding_mask(context_lengths, 8) attn_output, _, _ = transformer_attn.forward(hidden_states, attention_mask=attn_mask) assert torch.allclose(pad_attn_output, attn_output, atol=1e-3, rtol=1e-3) def test_decoding_attention(): # test the pipeline of decoding attention attn = PagedAttention() q = k = v = torch.randn(2, 1, 4, 8) k_cache = torch.empty(8, 4, 8, 8) v_cache = torch.empty(8, 4, 8, 8) past_kv = torch.randn(2, 8, 4, 8) context_lenghths = torch.tensor([8, 8]) lengths = context_lenghths + 1 block_tables = torch.tensor([[0, 1], [2, 3]]) copy_to_cache(past_kv, k_cache, lengths=context_lenghths, block_tables=block_tables) copy_to_cache(past_kv, v_cache, lengths=context_lenghths, block_tables=block_tables) attn.pad_decoding_forward(q, k, v, k_cache, v_cache, lengths=lengths, block_tables=block_tables) # test decoding accuracy, past_kv is reused config = LlamaConfig(num_attention_heads=4, num_key_value_heads=None, hidden_size=32) transformer_attn = LlamaAttention(config) transformer_attn.layer_idx = 0 transformer_attn.training = False hidden_states = torch.randn(2, 1, 32) proj_q = transformer_attn.q_proj(hidden_states).view(2, 1, 4, 8).transpose(1, 2) proj_k = transformer_attn.k_proj(hidden_states).view(2, 1, 4, 8).transpose(1, 2) proj_v = transformer_attn.v_proj(hidden_states).view(2, 1, 4, 8).transpose(1, 2) cos, sin = transformer_attn.rotary_emb(proj_v, 16) position_ids = lengths - 1 position_ids = position_ids.unsqueeze(1) # NOTE: this may be wrong proj_q, proj_k = apply_rotary_pos_emb(proj_q, proj_k, cos, sin, position_ids, unsqueeze_dim=2) llama_past_kv = DynamicCache() llama_past_kv.update(key_states=past_kv.transpose(1, 2), value_states=past_kv.transpose(1, 2), layer_idx=0) # past_key_value shape in Llama: bsz, num_heads, seq_len, head_dim pad_attn_output = attn.pad_decoding_forward( proj_q.transpose(1, 2), proj_k.transpose(1, 2), proj_v.transpose(1, 2), k_cache, v_cache, lengths, block_tables ) attn_mask = AttentionMaskConverter._make_causal_mask(q.shape[:2], q.dtype, q.device, past_key_values_length=8) attn_mask = attn_mask + PagedAttention.generate_padding_mask(lengths, 9).unsqueeze(1).unsqueeze(2) pad_attn_output = transformer_attn.o_proj(pad_attn_output) position_ids = context_lenghths.unsqueeze(1) attn_output, _, _ = transformer_attn.forward( hidden_states, past_key_value=llama_past_kv, position_ids=position_ids, attention_mask=attn_mask ) assert torch.allclose(pad_attn_output, attn_output, atol=1e-3, rtol=1e-2) if __name__ == "__main__": test_copy_to_cache() test_convert_kvcache() test_context_attention() test_decoding_attention()