import random import numpy as np import pytest import torch import torch.distributed as dist from torch.multiprocessing import Manager from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM import colossalai from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig from colossalai.inference.core.engine import InferenceEngine from colossalai.inference.modeling.models.glide_llama import GlideLlamaConfig, GlideLlamaForCausalLM from colossalai.inference.modeling.policy import NoPaddingLlamaModelInferPolicy from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn def setup_seed(seed): torch.manual_seed(seed) torch.random.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def check_inference_engine(use_engine=False, prompt_template=None, do_sample=True, policy=None): setup_seed(20) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") model = LlamaForCausalLM( LlamaConfig( vocab_size=50000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=16 ) ).cuda() model = model.eval() inputs = [ "介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,", "介绍一下武汉,", ] output_len = 38 do_sample = do_sample top_p = 0.5 top_k = 50 if use_engine: inference_config = InferenceConfig( max_output_len=output_len, prompt_template=prompt_template, dtype="fp32", use_cuda_kernel=True, tp_size=dist.get_world_size(), ) inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy) assert inference_engine.generation_config.max_new_tokens == output_len inference_engine.add_request(prompts=inputs) assert inference_engine.request_handler._has_waiting() generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k) outputs = inference_engine.generate(generation_config=generation_config) else: if prompt_template: # apply prompt template inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs] tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"] inputs = inputs.cuda() generation_config = GenerationConfig( do_sample=do_sample, top_p=top_p, top_k=top_k, pad_token_id=tokenizer.pad_token_id, max_new_tokens=output_len, ) outputs = model.generate(inputs, generation_config=generation_config) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) return outputs def run_engine(world_size, **kwargs): manager = Manager() result_list = manager.list([-1] * world_size) # Create a shared list spawn(run_dist, world_size, func_to_run=check_inference_engine, ret=result_list, **kwargs) return result_list[0] def check_spec_dec(num_layers, max_length): torch.manual_seed(123) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") # Dummy configs for testing toy_config = LlamaConfig(num_hidden_layers=num_layers) toy_config.pad_token_id = tokenizer.eos_token_id drafter_model = LlamaForCausalLM(toy_config) drafter_model = drafter_model.eval().cuda() large_config = LlamaConfig( hidden_size=4096, intermediate_size=11008, num_attention_heads=32, num_hidden_layers=8, num_key_value_heads=32, max_position_embeddings=2048, ) large_config.pad_token_id = tokenizer.eos_token_id main_model = LlamaForCausalLM(large_config) inference_config = InferenceConfig( dtype="fp16", micro_batch_size=1, max_batch_size=1, max_input_len=128, max_output_len=128, prefill_ratio=1.2, block_size=16, ) engine = InferenceEngine(main_model, tokenizer, inference_config) engine.enable_spec_dec(drafter_model, n_spec_tokens=5) dummy_inputs = torch.randint(low=5, high=1000, size=(1, 10), dtype=torch.long, device="cuda") generation_config = GenerationConfig( pad_token_id=tokenizer.eos_token_id, max_length=max_length, eos_token_id=tokenizer.eos_token_id, ) out, out_token_ids = engine.generate( prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True ) engine.disable_spec_dec() engine.clear_spec_dec() assert not engine.use_spec_dec assert engine.drafter is None and engine.drafter_model is None max_new_tokens = max_length - dummy_inputs.size(1) assert len(out) == 1 assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens # test GLIDE model glide_config = GlideLlamaConfig( intermediate_size=8192, large_hidden_size=4096, large_num_attention_heads=32, num_hidden_layers=num_layers, ) glide_model = GlideLlamaForCausalLM(glide_config) engine.enable_spec_dec(glide_model, use_glide_drafter=True) out, out_token_ids = engine.generate( prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True ) engine.clear_spec_dec() assert len(out) == 1 assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs): colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost") if ret: ret[rank] = func_to_run(**kwargs) else: func_to_run(**kwargs) @parameterize("prompt_template", [None, "llama"]) @parameterize("do_sample", [False]) def test_tp_engine(prompt_template, do_sample): kwargs1 = { "use_engine": True, "prompt_template": prompt_template, "do_sample": do_sample, "policy": NoPaddingLlamaModelInferPolicy(), } kwargs2 = {"use_engine": False, "prompt_template": prompt_template, "do_sample": do_sample, "policy": None} colossal_tp_1_output = run_engine(1, **kwargs1) colossal_tp_2_output = run_engine(2, **kwargs1) transformer_tp_1_output = run_engine(1, **kwargs2) for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output): assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}" assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}" @parameterize("num_layers", [1]) @parameterize("max_length", [64]) def test_spec_dec(num_layers, max_length): spawn(run_dist, 1, func_to_run=check_spec_dec, num_layers=num_layers, max_length=max_length) @pytest.mark.dist @rerun_if_address_is_in_use() def test_inference_engine(): test_tp_engine() test_spec_dec() if __name__ == "__main__": test_inference_engine()