#!/usr/bin/env python # -*- encoding: utf-8 -*- import pytest from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, rotate_half try: from vllm import pos_encoding_ops rotary_embedding_neox = pos_encoding_ops.rotary_embedding_neox HAS_VLLM_KERNERL = True except: print("fall back to original rotary_embedding_neox of huggingface") print("install vllm from https://github.com/vllm-project/vllm to accelerate your inference") HAS_VLLM_KERNERL = False def rotate_half(x: torch.Tensor) -> torch.Tensor: x1 = x[..., :x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb( q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class RefRotaryEmbeddingNeox(nn.Module): """Reference implementation of the GPT-NeoX style rotary embedding.""" def __init__( self, dim: int, max_position_embeddings: int = 2048, base: int = 10000, ) -> None: super().__init__() self.rotary_dim = dim self.max_position_embeddings = max_position_embeddings # Create cos and sin embeddings. inv_freq = 1.0 / (base**(torch.arange(0, dim, 2) / dim)) t = torch.arange(max_position_embeddings).float() freqs = torch.einsum("i,j->ij", t, inv_freq.float()) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos().to(dtype=inv_freq.dtype) sin = emb.sin().to(dtype=inv_freq.dtype) self.register_buffer("cos_cached", cos, persistent=False) self.register_buffer("sin_cached", sin, persistent=False) def forward( self, positions: torch.Tensor, # [num_tokens] query: torch.Tensor, # [num_tokens, num_heads, head_size] key: torch.Tensor, # [num_tokens, num_heads, head_size] ) -> Tuple[torch.Tensor, torch.Tensor]: query_rot = query[..., :self.rotary_dim] query_pass = query[..., self.rotary_dim:] key_rot = key[..., :self.rotary_dim] key_pass = key[..., self.rotary_dim:] query_rot = query_rot.transpose(0, 1) key_rot = key_rot.transpose(0, 1) cos = F.embedding(positions, self.cos_cached) sin = F.embedding(positions, self.sin_cached) query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) query_rot = query_rot.transpose(0, 1).contiguous() key_rot = key_rot.transpose(0, 1).contiguous() query = torch.cat((query_rot, query_pass), dim=-1) key = torch.cat((key_rot, key_pass), dim=-1) # Output query/key shape: [num_tokens, num_tokens, head_size] return query, key def run_rotary_embedding_neox( num_tokens: int, num_heads: int, head_size: int, max_position: int, rotary_dim: int, dtype: torch.dtype, base: int = 10000, ) -> None: positions = torch.randint(0, max_position, (num_tokens, ), device='cuda') query = torch.randn(num_tokens, num_heads * head_size, dtype=dtype, device='cuda') key = torch.randn(num_tokens, num_heads * head_size, dtype=dtype, device='cuda') # Create the rotary embedding. inv_freq = 1.0 / (base**(torch.arange(0, rotary_dim, 2) / rotary_dim)) t = torch.arange(max_position).float() freqs = torch.einsum('i,j -> ij', t, inv_freq.float()) cos = freqs.cos() sin = freqs.sin() cos_sin_cache = torch.cat((cos, sin), dim=-1) cos_sin_cache = cos_sin_cache.to(dtype=dtype, device='cuda') # Run the kernel. The kernel is in-place, so we need to clone the inputs. out_query = query.clone() out_key = key.clone() rotary_embedding_neox( positions, out_query, out_key, head_size, cos_sin_cache, ) # Run the reference implementation. ref_rotary_embedding = RefRotaryEmbeddingNeox( dim=rotary_dim, max_position_embeddings=max_position, base=base, ).to(dtype=dtype, device='cuda') ref_query, ref_key = ref_rotary_embedding( positions, query.view(num_tokens, num_heads, head_size), key.view(num_tokens, num_heads, head_size), ) ref_query = ref_query.view(num_tokens, num_heads * head_size) ref_key = ref_key.view(num_tokens, num_heads * head_size) # Compare the results. assert torch.allclose(out_query, ref_query, atol=1e-3, rtol=1e-5) assert torch.allclose(out_key, ref_key, atol=1e-3, rtol=1e-5) @pytest.mark.skipif(not HAS_VLLM_KERNERL, reason="You need to install llama supported cuda kernels to run this test") def test_rotary_embedding(): run_rotary_embedding_neox( num_tokens=1024, num_heads=8, head_size=64, max_position=8192, rotary_dim=64, dtype=torch.float16, ) if __name__ == "__main__": test_rotary_embedding()