import torch import torch.nn as nn from torch.fx import GraphModule from colossalai.fx import ColoTracer as Tracer class ControlFlowModel(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(10, 10) self.linear2 = nn.Linear(10, 10) def forward(self, x, y): x1 = self.linear1(x) y1 = self.linear2(y) if x1.dim() == 2: return x1 + y1 else: return x1 - y1 def test_control_flow(): model = ControlFlowModel() tracer = Tracer() graph_branch_true = tracer.trace(model, meta_args={ 'x': torch.rand(4, 10, device='meta'), 'y': torch.rand(4, 10, device='meta') }) graph_branch_false = tracer.trace(model, meta_args={ 'x': torch.rand(10, device='meta'), 'y': torch.rand(4, 10, device='meta') }) gm_branch_true = GraphModule(model, graph_branch_true, model.__class__.__name__) gm_branch_false = GraphModule(model, graph_branch_false, model.__class__.__name__) gm_branch_true.recompile() gm_branch_false.recompile() # test the true branch x = torch.rand(4, 10) y = torch.rand(4, 10) assert torch.all(model(x, y) == gm_branch_true(x, y)) assert torch.all(gm_branch_false(x, y) != gm_branch_true(x, y)) # test the true branch x = torch.rand(10) y = torch.rand(4, 10) assert torch.all(model(x, y) == gm_branch_false(x, y)) assert torch.all(gm_branch_false(x, y) != gm_branch_true(x, y)) if __name__ == '__main__': test_control_flow()