from typing import Dict from colossalai.tensor import ColoParameter, ComputeSpec, TensorSpec, ProcessGroup from . import ColoModule import torch _COLOSSAL_MODULES: Dict[type, ColoModule] = {} def register_colo_module(module_type: type, colo_module: ColoModule): global _COLOSSAL_MODULES _COLOSSAL_MODULES[module_type] = colo_module def is_colo_module(module: torch.nn.Module): global _COLOSSAL_MODULES for module_type in _COLOSSAL_MODULES.keys(): if isinstance(module, module_type): return True return False def get_colo_module(module: torch.nn.Module): global _COLOSSAL_MODULES if is_colo_module(module): for module_type, colo_module in _COLOSSAL_MODULES.items(): if isinstance(module, module_type): return colo_module else: return None def check_colo_module(module: torch.nn.Module, pg: ProcessGroup, recursive=True): if is_colo_module(module): colo_module = get_colo_module(module) param_names = colo_module.get_param_names() compute_pattern = None for param_name in param_names: param = module.get_parameter(param_name) if not isinstance(param, ColoParameter): raise Exception(f'Invalid ColoParameter spec: {param} in {module} is not a ColoParameter.') if param.has_compute_spec(): cur_compute_pattern = param.tensor_spec.compute_spec.compute_pattern if compute_pattern is None: compute_pattern = cur_compute_pattern else: if cur_compute_pattern != compute_pattern: raise Exception( f'Invalid ColoParameter spec: Params in {module} have different compute_pattern.') else: continue if compute_pattern is not None: colo_module.register(compute_pattern, pg) if not colo_module.has_compute_pattern(compute_pattern): raise Exception( f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.') match_specs = False allowed_specs = colo_module.get_dist_specs(compute_pattern) for _, param_specs in allowed_specs.items(): cur_match = True for param_name, dist_spec in param_specs.items(): param = module.get_parameter(param_name) if param.has_compute_spec(): if dist_spec != param.tensor_spec.dist_spec: cur_match = False break else: if dist_spec is not None: cur_match = False break if cur_match == True: match_specs = True break if match_specs == False: raise Exception(f'Invalid ColoParameter spec: Params in {module} are incorrectly sharded.') if recursive == True: for submodule in module.children(): check_colo_module(submodule, pg=pg, recursive=True) def init_colo_module(module: torch.nn.Module, compute_spec: ComputeSpec, pg: ProcessGroup, recursive=True, mode='default'): compute_pattern = compute_spec.compute_pattern if is_colo_module(module): # for each param # set DistSpec and ComputeSpec colo_module = get_colo_module(module) colo_module.register(compute_pattern, pg) if not colo_module.has_compute_pattern_with_mode(compute_pattern, mode=mode): raise NotImplementedError # a set for modules which update at least one param in the init process. # these modules need to be checked whether all params still match one of the valid compute pattern. modules_update_param = {module} for param_name, dist_spec in colo_module.get_dist_specs_with_mode(compute_pattern, mode=mode).items(): if dist_spec is None: continue param = module.get_parameter(param_name) if isinstance(param, ColoParameter): spec = TensorSpec(dist_spec, compute_spec) param.set_tensor_spec(spec) for mod in param.shared_param_modules: modules_update_param.add(mod) for mod in modules_update_param: check_colo_module(mod, pg, recursive=False) if recursive == True: for submodule in module.children(): init_colo_module(submodule, compute_spec, pg=pg, recursive=True, mode=mode)